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Abstract—Nowadays, individuals with mobility needs face a
significant challenge when docking vehicles. In many cases, after
parking, they encounter insufficient space to exit, leading to two
undesired outcomes: either avoiding parking in that spot or settling
for improperly placed vehicles. To address this issue, this paper
presents a parking control system employing gestural teleoperation.
The system comprises three main phases: capturing body markers,
interpreting gestures, and transmitting orders to the vehicle. The
initial phase is centered around the MediaPipe framework, a versatile
tool optimized for real-time gesture recognition. MediaPipe excels at
detecting and tracing body markers, with a special emphasis on hand
gestures. Hands detection is done by generating 21 reference points
for each hand. Subsequently, after data capture, the project employs
the MultiPerceptron Layer (MPL) for in-depth gesture classification.
This tandem of MediaPipe’s extraction prowess and MPL’s analytical
capability ensures that human gestures are translated into actionable
commands with high precision. Furthermore, the system has been
trained and validated within a built-in dataset. To prove the domain
adaptation, a framework based on the Robot Operating System 2
(ROS2), as a communication backbone, alongside CARLA Simulator,
is used. Following successful simulations, the system is transitioned
to a real-world platform, marking a significant milestone in the
project. This real-vehicle implementation verifies the practicality and
efficiency of the system beyond theoretical constructs.

Keywords—Gesture detection, MediaPipe, MultiLayer Perceptron
Layer, Robot Operating System.

I. INTRODUCTION

INDIVIDUALS with mobility challenges encounter

significant obstacles when parking their vehicles [1]. It is

necessary to address this issue with sensitivity, particularly

when considering the needs of people with disabilities and

the elderly. The goal is to ensure that everyone, regardless

of their physical limitations, can access the freedom and

independence that come with personal transportation.

As our population ages, the number of elderly drivers is

on the rise [2]. A significant portion of them depend on

customized cars to cope with restricted mobility. Despite the

ability to operate these adapted vehicles, they face difficulties

in locating suitable parking areas. Such locations are not only

mandated by law but are also essential for those reliant on

them.

Statistics indicate an increase in elderly drivers and

a corresponding need for adapted vehicles [3]. However,

while accessible parking spaces are legally required, actual

availability falls short. As a result, individuals with mobility
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limitations often face the difficult choice of either avoiding

inadequate parking options or tolerating inconsiderate vehicle

placement.

In this paper, we present a gestural teleoperation-based

parking control system designed to address the challenges of

controlling parking. The framework and setup schematic of

the system can be found in Fig. 1. Our contributions are as

follows:

• Remote-controller free exterior control system.

• Real-time gesture recognition using MediaPipe

framework and a MultiPerceptron Layer (MPL) for

gesture classification.

• A three-phase distributed system: capturing body

markers, interpreting gestures, and transmitting orders to

the vehicle.

• Real world integration.

The following sections will delve into the details of our

parking control system, its development, and the validation

process, highlighting its significant impact on the lives of those

who rely on it.

II. RELATED WORKS

The development of control systems for parking cars has

been a topic of extensive research in recent years, with several

significant advancements being made.

One of the most notable advancements is the unified

motion planning method for parking an automated vehicle

in the presence of irregularly placed obstacles. This method

[1], proposed by Li and Shao, addresses the complex

problem of navigating a vehicle into a parking space while

avoiding obstacles. The unified motion planning method

represents a significant step forward in the field, providing

a comprehensive solution that takes into account the unique

challenges presented by irregularly placed obstacles.

Building on this work, Li et al. introduced an

optimization-based trajectory planning method [4]. This

approach refines the process of planning the vehicle’s path

into the parking space. By using optimization techniques, this

method provides a more efficient and effective solution to the

problem of automated parking.

Furthermore, emerging technologies such as haptic displays

are beginning to be incorporated into parking systems. For

instance, Zhang et al. have explored the use of magnetic

field control for haptic display [5]. This technology could

potentially be applied to provide drivers with tactile feedback

during the parking process, enhancing user experience and

improving safety.
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Fig. 1 Hands-off Parking Framework

These developments represent the current state of the art in

parking control systems. However, they share a common issue:

the operator is required to remain inside the car throughout the

entire parking process. To address this challenge, this project

considers two main concepts: teleoperation, which involves

operating a vehicle from the outside, and the interpretation of

orders through artificial vision.

A. Vehicle Teleoperation

Automated vehicle control without human presence is an

active research area that is developing rapidly, especially in

the field of Automated vehicles and remote driving [6]. In

this area, there is a distinction between teleoperation from a

remote location and teleoperation in the vehicle’s proximity.

1) Remote Control: In the realm of controlling vehicles

remotely, the most notably advancing solution, particularly

in military applications, is the adoption of digital twins and

Virtual Reality (VR) [7].

A virtual system and a physical system cooperate to

form the control system. A virtual reality system uses a

Head-Mounted Display (HMD) to show the user a digital twin

of a vehicle and the environment in which it is located. The

user operates the vehicle with a set of virtual reality controls.

Control data are immediately translated from VR to the actual

vehicle in real-time. This system makes ultra-remote control

possible and facilitates control of multiple vehicles [8].

VR and digital twins for controlling vehicles remotely

are undoubtedly a substantial progression. Nevertheless, our

control system improves specific facets over this solution.

Firstly, the cost of VR systems can be prohibitive for many

users. Although prices are decreasing as the technology

becomes more common, it remains a barrier to widespread

adoption. Furthermore, accessibility is another issue. Not all

users can comfortably use VR controls or head-mounted

displays. This can be especially problematic for individuals

with specific disabilities or health conditions.

2) On-site Control: In the area of on-site remote control,

solutions have been widely available for a long time. This

can be seen in the trucking industry, where some cranes

are remotely controlled using handsets. However, a new

remote-control system that allows the truck itself to be

operated via a radio frequency-connected remote control was

introduced by Volvo in 2018 [9]. This system was specifically

designed to enable simple maneuvering in the absence of

external assistance at low speeds (below 10 km/h).

Our plan is to implement the suggested control system

(Fig. 1) by replacing the current control method. Specifically,

we would use gesture detection instead of a remote control.

Using gestures as a control method can provide numerous

advantages over traditional remote control, particularly in the

remote vehicle operation context:

• Accessibility: Gesture-based control systems increase

accessibility for individuals with disabilities or those who

have difficulty using traditional remote controls. This

inclusivity is crucial for ensuring a broader range of users

can operate and interact with the vehicle.

• Reduced Equipment: Conventional remote controls

generally need physical devices like handheld controllers,

which have a tendency to be lost or damaged easily. In

contrast, gesture-based controls require no supplementary

equipment, thereby mitigating potential issues stemming

from damaged control devices.

• Simplicity: The control process can be simplified through

the use of gestures. Users can convey their intentions

through simple, natural movements that are often easier

than manipulating buttons or joysticks on a remote

control.

B. Gesture Detection with Computer Vision

Gesture detection via computer vision is a rapidly

developing research area with a broad range of applications in

human-computer interaction (HCI). Amongst the applications

of hand gesture recognition systems, they are notable in

user interfaces for sign language communication, automotive

systems, and air gesture classifiers in new smartphones [10].

There is plenty of variety of methods for gesture detection,

but the most important ones are stated here:
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• OpenPose [11], [12] is a real-time library for human

pose detection. It was the first to demonstrate the ability

to jointly detect human body, foot, hand, and facial

keypoints in individual images. OpenPose is capable of

detecting a total of 135 key points and has been shown

to be robust for varying numbers of people.

• MediaPipe [13] is a library that facilitates the integration

of advanced machine learning features into your

applications by using minimal code. MediaPipe offers

essential machine learning models for standard duties,

such as tracking hands, removing the development

bottleneck that plagues many machine learning

applications. These models and their user-friendly

APIs simplify the development process and accelerate

project completion for computer vision applications.

A recent study [14] compared various head pose estimation

algorithms that were designed to capture facial geometry from

videos. The study analyzed the performance of OpenFace

2.0 [15], MediaPipe [13], and 3DDFA V2 [16]. The results

revealed that 3DDFA V2 had a mean error of less than

or equal to 5.6°, depending on the plane of motion, while

OpenFace 2.0 and MediaPipe had mean errors of 14.1° and

11.0°, respectively. This study demonstrated the superiority

of the 3DDFA V2 algorithm in head pose estimation, across

different directions of motion.

Overall, OpenPose has been proven effective in detecting

human poses, although its high computational demand may

limit its use. In contrast, MediaPipe provides a more flexible

alternative that may be better suited for real-time applications.

Ultimately, the choice of method was made based on the

requirements of this project, in order to make it low-cost,

lightweight and scalable.

III. THEORETICAL BACKGROUND

This section discusses the theoretical foundations of Human

Pose Estimation, Mediapipe, and MultiLayer-Perceptron,

which are essential for comprehending this project.

A. Human Pose Estimation

In order to determine both the configuration and location of

the user’s body, mainly their hands position, we are employing

a technique known as Human Pose Estimation (HPE), which

involves identifying and categorizing key points of the human

body, such as joints (e.g., arms, head, torso). These key points

collectively describe the individual’s pose and are connected

to form pairs.

The pairing of these key points is significant, and not all

points can form a pair. The goal of HPE is to create a skeletal

model of the human body, which can be applied to specific

tasks. This skeletal model is represented by a choice of three

main procedures: the skeleton-based model, the contour-based

model, and the volume-based model, as illustrated in Fig. 2.

To determine the user’s body configuration and location,

specifically the positions of their hands, we utilize HPE.

This approach involves identifying and categorizing crucial

points on the human body, including joints like arms, head,

and torso, which describe a person’s pose. By connecting

Fig. 2 Human Body Detection models

key points, pairs are formed. It is significant to note that

not all points can be paired. HPE endeavors to generate

a skeletal replica of the human body that can be utilized

for specific purposes, presenting three primary methods: the

skeleton-oriented model, the contour-oriented model, and the

volume-oriented model.

HPE operates within computer vision, striving to understand

the geometric and motion characteristics of the human body.

Two methodologies are employed: the classical approach and

the deep learning-based one. In this project, we exclusively

implement the latter, harnessing the capabilities of deep

learning. Deep learning, exemplified by Convolutional Neural

Networks (CNNs) [17], excels in computer vision tasks,

including HPE. This project leverages deep learning and CNNs

to robustly capture and interpret body poses, providing a more

precise and versatile solution compared to traditional methods.

CNNs are capable of effectively extracting patterns and

features from input images, making them extremely valuable

for tasks such as classification [18], object detection [19], and

image segmentation [20].

The HPE method uses CNNs to estimate body joint

positions, treating it as a regression problem. A cascade of

regressors improves our neural network’s structure, greatly

enhancing accuracy. This advanced architecture can model

complex data, capturing both simple and nuanced poses

often seen in real situations. This capability, previously hard

to achieve, broadens its applications from human-computer

interaction to robotics and so on.

B. MediaPipe

MediaPipe [13] is a cross-platform framework that enables

the development of multimodal applications utilizing computer

vision, machine learning, and media processing. Developers

can utilize MediaPipe to construct pipelines of components

capable of handling various types of data, including images,

video, audio, and sensor data. MediaPipe offers a range of

pre-designed models and tools for commonly used tasks,

including detecting faces and hands, identifying objects, and

segmenting images [21].

The theoretical foundation of MediaPipe [22] can be

categorized into three key aspects: graph-based architecture,
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stream-based processing, and model customization.

• In MediaPipe, the protobuf (.pbtxt) text file establishes a

graph structure. The graph’s structure consists of nodes

and edges, representing different elements in an assembly

line. Nodes fall into three categories: calculators,

subgraphs, and input/output nodes. Calculators perform

operations on input data and produce output data.

Subgraphs are reusable components made up of other

nodes. Input/output nodes establish connections between

the graph and external data sources or destinations. The

graph definition outlines each node’s name, type, options,

and the connections between nodes using stream tags.

• Stream-Based Processing: MediaPipe utilizes streams to

transmit data between nodes in a graph. A stream is

a sequence of packets that transport data of a specific

type, including images, tensors, landmarks, or detections.

Each packet is timestamped to indicate when the data

were either produced or consumed. MediaPipe provides

various stream types, such as immediate streams, throttled

streams, back-edge streams, and side-packet streams.

Each stream type exhibits unique properties and behaviors

that impact the flow of data in the graph.

• Model customization: MediaPipe offers multiple models

for everyday tasks, including detecting objects, creating

a face mesh, estimating poses, and segmenting images.

MediaPipe Model Maker also customizes models with

their data to detect objects or segments that are not

covered by the provided models [23]. Model Maker

is a tool that employs transfer learning to retrain

existing models with a smaller dataset, achieving high

performance. The customized models are compatible with

MediaPipe and can be utilized in the graph definition.

C. MultiLayer-Perceptron

By definition, a MultiLayer Perceptron (MLP) is an

artificial neural network that comprises numerous layers of

interconnected neurons. These neurons are designed to mirror

the structure of human brain neurons, allowing them to learn

complex information and make meaningful predictions [24].

MLPs are feed-forward networks that exclusively transmit

data in one direction. In contrast to recurrent neural networks,

which allow data to flow in both directions to form a cycle.

Despite this, MLPs still serve as the fundamental algorithm

for potent neural networks like CNNs. CNNs are a specialized

type of neural network designed for processing grid-like data,

such as images. They have proven to be highly effective in

tasks like image classification, object detection, and image

segmentation [25].

The process of a MLP operates as follows. Each neuron

within the MLP is solely capable of solving simple problems.

However, when these neurons collaborate, they can solve

intricate problems. Input data progress through various layers

of interconnected neurons, with each layer solving a particular

facet of the issue until the final output is generated,

representing the resolution to the intricate problem.

An artificial neural network known as the MLP is structured

as a series of interconnected layers of neurons, consisting of

three primary components: the input layer, the hidden layers,

and the output layer.

The input layer processes the raw input data, while the

hidden layers perform computations based on this data.

Finally, the output layer generates the desired output.

It is important to emphasize that the number of neurons in

the input layer should align with the dimensions of the training

instances, and the neuron count in the output layer should

match the size of the output labels. The design of the hidden

layer, in terms of the number of neurons and layers, can be

tailored to meet specific requirements. The addition of more

neurons in the hidden layer enhances the network’s capacity

to tackle progressively intricate problem-solving tasks.

IV. PROPOSAL

During a time when advanced technology and innovation

are revolutionizing the field of automated vehicles control

systems, we propose a comprehensive project consisting of five

critical components: Camera Selection, MediaPipe, Dataset,

Multilayer Perceptron, and Integration.

A. Camera Selection

We chose a basic off-the-shelf webcam for this project

with the primary objective of achieving a low-cost system.

A comparison between industrial A9120 Bassler camera and

a built-in webcam was done, taking as conclusion the fact that

the differences in image quality and frame rate between the

industrial A9120 Bassler camera and the built-in webcam were

not significant enough to justify the substantial cost difference.

The Bassler camera, while offering advanced features and

slightly better performance, did not provide a proportionate

increase in system efficiency for our specific application.

Furthermore, by selecting the off-the-shelf webcam, we

ensured broader accessibility and replicability of our project,

as potential users or researchers might not have the budget

or inclination to invest in high-end industrial cameras. This

decision, therefore, not only met our cost-saving objective

but also prioritized the wider applicability and adaptability

of our system. In light of these findings, the basic webcam

was deemed sufficient and more economical for our project’s

requirements.

B. MediaPipe

For this application we have employed the MediaPipe API

for a specific purpose, which involves the holistic analysis of

video input using the framework’s comprehensive approach.

This method simplifies tracking a single operator in the

video stream. Our focus is on extracting hand landmarks

and distinguishing between the left and right hands. This

segmentation permits precise and detailed analysis of hand

gestures, a pivotal component of our research, that enables

us to deepen our comprehension of the subtle interactions

and expressions conveyed through hand gestures. From the

MediaPipe API, we obtained the 21 landmark points (x, y)

for each hand, which we used for the control system.
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C. Dataset

During the dataset generation process, the system’s potential

confusion was always taken into account in recognizing the

intended gestures. Thus, separate datasets were created for

each hand to minimize confusion. This dataset is composed

of a first column signaling the class to which the stored

gesture belongs, and then 21 landmarks with their x and y
coordinates, for a total of 42 points. Before storing the hand

landmarks, we normalized the coordinates to reduce the impact

of operator-to-camera distance variations ensuring the system’s

robustness and reliability in various real-world conditions.

The steering of the car is controlled by the right hand. This

dataset is composed by a total of 5603 hand gestures which

classes for it are shown in Table I: Emergency Stop (1996),

Move Forward (1522), Turn Right (1094), Turn Left (1021).

For the left hand, which is responsible for the car’s velocity,

the dataset is composed by a total of 6895 hand gestures which

classes are displayed in Table II: Emergency Stop (1966),

Emergency Stop (1522), Throttle Level 1 (381), Throttle Level

2 (288), Throttle Level 3 (340), Brake Level 1 (551), Brake

Level 2 (352), Brake Level 3 (395), Reverse (1100).

The datasets are divided into training and testing sets for the

subsequent use of the network, with 75% of the data assigned

for training and 25% for testing. This partitioning strategy is

used to evaluate the performance of the models and ensure

their capability of making precise predictions when exposed

to unfamiliar data.

The custom, minimal datasets utilized in this project were

developed to function as evidence of feasibility for our

particular application. It should be noted that these datasets

were solely created to showcase the system’s capabilities and

are not intended for commercial use.

TABLE I
RIGHT HAND

Gesture Command Legend

Emergency Stop R1

Move forward R2

Turn right R3

Turn left R4

D. MLP

The computational core of this project is formed by MLP

models, which provides manners to interpret and respond to

TABLE II
LEFT HAND

Gesture Command Legend

Emergency Stop L1

Emergency Stop L2

Throttle Level 1 L3

Throttle Level 2 L4

Throttle Level 3 L5

Brake Level 1 L6

Brake Level 2 L7

Brake Level 3 L8

Reverse L9

the hand gestures captured by the selected webcam. MLP

models are configured for each individual hand. Figs. 3 and 4

get the 21 (x, y) landmarks associated with the hand gesture of

the operator and takes into consideration the unique features

and nuances associated with each command. Subsequently,

the output of these MLPs represents the operator’s interpreted

command.

The MLP in our project is trained using labeled datasets.

Of the 43 variables in the dataset, the initial column functions

as the label signifying the class or category to which each
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Fig. 3 MLP Steering

Fig. 4 MLP Velocity

data point pertains. The MLP learns to predict based on the

remaining 42 parameters by adjusting its internal weights and

biases. Throughout the training process, the model optimizes

its parameters to minimize the variance between its predicted

outputs and the actual labels provided in the dataset. This

supervised learning approach allows the MLP to learn intricate

connections among the input features and their corresponding

labels, empowering it to deliver precise predictions on novel,

unlabeled data points.

E. Integration

In the project’s final phase, a critical objective is to

seamlessly integrate the gesture recognition system into the

distributed control architecture, in the same OBU (On-board

Processing Unit) using ROS2 (Robot Operating System 2)

[26]. To ensure a smooth integration, a containerization

approach has been employed for each component. Firstly,

the encapsulation of different modules within this project

guarantees that software requirements for gesture recognition

system are isolated from the host environment, preventing

potential conflicts. Secondly, it simplifies the deployment and

management of components across different nodes within

the ROS2 ecosystem. This containerized procedure not only

unlocks portability but also enables efficient scaling and easy

distribution of the system, eventually providing a smooth

integration into the ROS2 architecture.

Continuing with the integration process, we establish a

dedicated ROS2 node for the control system to seamlessly

communicate with the car’s node, which is responsible for

overseeing the actuator controllers. The gesture control system

publishes the corresponding commands on specific ROS2

topics, gathering a range of essential functions, including

steering, throttle, brake, or gear shifts, amongst many others.

Expanding on the previously established communication

infrastructure, our integrated system enables not only the

real-time and context-aware control of the vehicle via

recognized gestures, but also advances its abilities by

subscribing to the ’speed’ topic. This speed information is

therefore utilized in the steering control algorithm, as shown

by (1). Here, the variable ’v’ represents the current velocity of

the automobile. By integrating this dynamic variable into the

control system, our system guarantees precise adjustment of

the steering angle according to real-time speed data, as well

as an accurate and safe process.

f(x) = (1, 6/(e
x
v + 1)) + 0.1 (1)

The function offers a steering angle ranging between 50%

and 100% of the vehicle’s maximum, up to 3 kilometers

per hour. Thereafter, the angle progressively decreases to 10

km/h, at which it is practically minimum, set at 10% of the

steering angle. Our distributed system facilitates interaction

with the car’s control system, converting identified gestures

into tangible and responsive actions, thereby closing the gap

between human input and vehicular control.

V. RESULTS

For every MLP model, we implement a typical compilation

setup that uses the ’Adam’ optimization algorithm [27],

’Sparse Categorical Crossentropy’ loss function [28], and

’accuracy’ as the performance metric.

The obtained values for each MLP are the following:

• Steering MLP - loss: 0.0747 - accuracy: 0.9829

• Velocity MLP - loss: 0.2979 - accuracy: 0.9345

It is worth emphasizing that the outcomes of this study

reflect a proof of concept rather than a refined final product.

The main aim of this research was to demonstrate the

possibility of utilizing hand signals to control a vehicle

within a controlled environment. Despite displaying promising

proficiency in detecting and responding to gestures, it is

crucial to acknowledge that these findings serve as the
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Fig. 5 Steering Confusion Matrix

preliminary foundation for further exploration of this idea.

Further refinement, rigorous testing, and optimization are

necessary to develop this proof of concept into a robust and

production-ready solution. Our system’s evaluation comprises

two crucial phases: validation and testing.

A. Validation

During the validation phase, our analysis primarily focused

on assessing the performance of the gesture detectors for

each hand, aiming to gain a comprehensive understanding

of their limitations and strengths. In this evaluation, we not

only considered the extraction of confusion matrices, which

provided valuable insights into the detectors’ performance

regarding different gestures, as depicted in Figs. 5 and 6, but

there was a close examination of the network’s accuracy and

loss metrics. These values were instrumental in quantifying

the system’s ability to correctly classify and differentiate

various hand gestures, highlighting where improvements or

adjustments might be necessary.

Furthermore, to emulate real-world scenarios, we conducted

a practical test involving the simulation of an environment with

multiple individuals within the camera’s frame. The primary

objective was to assess the system’s capability to maintain

stability and avoid erratic switching between individuals

while interpreting gestures. This real-world scenario testing

not only provided insights into the system’s adaptability

but also allowed us to identify areas that may require

subsequent refinement. The combination of performance

metrics, confusion matrices, and real-world testing results

offers a comprehensive overview of the system’s functionality,

paving the way for further testing and refinement stages.

B. Implementation

During the evaluation stage, our project went through two

crucial assessments to gauge its practicality in the real world.

Our initial evaluation consisted of a comprehensive simulation

using the CARLA simulator [29]. The simulation encompassed

a variety of parking situations that were resolved by different

operators, enabling us to gather assorted feedback and insights
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8 373 0 3 1 0 0 0 0

0 0 86 3 0 0 0 0 0

0 2 0 63 3 0 0 0 0

0 1 0 15 67 0 0 0 0
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0 0 0 0 0 3 66 0 0

0 0 0 0 0 0 46 47 0

0 0 0 0 0 0 0 0 279
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Fig. 6 Velocity Confusion Matrix

into the system’s performance in diverse scenarios. The

simulated environment provided a controlled yet dynamic

setting to evaluate the control system’s responsiveness and

adaptability.

After completing the simulation, we advanced to real-world

testing by deploying our system on a modified Renault

Twizy outfitted with automated capabilities. This progression

to genuine on-road testing allowed us to verify the

system’s functionality amidst the practical challenges and

complexities it could face. These testing phases yielded

valuable information regarding the system’s dependability, its

capacity to manage various parking scenarios, and its potential

for deployment in real-world applications.

VI. CONCLUSIONS

To sum up, while the development and testing of this project

were noteworthy, there are aspects that merit critical attention.

The objective to investigate the use of hand gestures for vehicle

control was realized, yet there might be instances where hand

gestures could be misinterpreted or not detected, leading to

possible control issues. While the system does convert hand

gestures to vehicle control actions, the real-world applicability

and safety implications need rigorous and further scrutiny. Our

tests, both in simulated and real-world environments, indicate

an undeniable potential, but more extensive testing is essential.

This work provides a robust foundation, with a perspective of

continuous evaluation and refinement before considering wider

applications in the foreseeable future.
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