Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 33122
Learning the Dynamics of Articulated Tracked Vehicles
Authors: Mario Gianni, Manuel A. Ruiz Garcia, Fiora Pirri
Abstract:
In this work, we present a Bayesian non-parametric approach to model the motion control of ATVs. The motion control model is based on a Dirichlet Process-Gaussian Process (DP-GP) mixture model. The DP-GP mixture model provides a flexible representation of patterns of control manoeuvres along trajectories of different lengths and discretizations. The model also estimates the number of patterns, sufficient for modeling the dynamics of the ATV.Keywords: Dirichlet processes, Gaussian processes, robot control learning, tracked vehicles.
Digital Object Identifier (DOI): doi.org/10.5281/zenodo.1124704
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1787References:
[1] M. Gianni, F. Ferri, M. Menna, and F. Pirri, “Adaptive robust three-dimensional trajectory tracking for actively articulated tracked vehicles,” Journal of Field Robotics, pp. n/a–n/a, 2015.
[Online]. Available: http://dx.doi.org/10.1002/rob.21584
[2] J. Joseph, F. Doshi-Velez, A. S. Huang, and N. Roy, “A bayesian nonparametric approach to modeling motion patterns,” Autonomous Robots, vol. 31, no. 4, pp. 383–400, 2011.
[Online]. Available: http://dx.doi.org/10.1007/s10514-011-9248-x
[3] W. Wei, H.and Lu, P. Zhu, S. Ferrari, R. H. Klein, S. Omidshafiei, and J. P. How, “Camera control for learning nonlinear target dynamics via bayesian nonparametric dirichlet-process gaussian-process (dp-gp) models,” in IROS, 2014, pp. 95–102.
[4] Bluebotics, “Absolem surveillance & rescue,” http://www.bluebotics. com/mobile-robotics/absolem/, 2011.
[5] D. Nguyen-Tuong and J. Peters, “Model learning for robot control: a survey,” Cognitive Processing, vol. 12, no. 4, pp. 319–340, 2011.
[6] M. P. Deisenroth, G. Neumann, and J. Peters, “A survey on policy search for robotics,” Foundations and Trends in Robotics, vol. 2, no. 12, pp. 1–142, 2011.
[7] J. S. Cruz, D. Kuli´c, and W. Owen, Proceedings of the Second International Conference on Autonomous and Intelligent Systems. Berlin, Heidelberg: Springer Berlin Heidelberg, 2011, ch. Online Incremental Learning of Inverse Dynamics Incorporating Prior Knowledge, pp. 167–176.
[8] D. Nguyen-Tuong, B. Scholkopf, and J. Peters, “Sparse online model learning for robot control with support vector regression,” in IROS, 2009, pp. 3121–3126.
[9] J. de la Cruz, W. Owen, and D. Kulic, “Online learning of inverse dynamics via gaussian process regression,” in IROS, 2012, pp. 3583–3590.
[10] A. J. Ijspeert, J. Nakanishi, H. Hoffmann, P. Pastor, and S. Schaal, “Dynamical movement primitives: Learning attractor models for motor behaviors,” Neural Comput., vol. 25, no. 2, pp. 328–373, 2013.
[11] S. Vijayakumar and S. Schaal, “Locally weighted projection regression: An o (n) algorithm for incremental real time learning in high dimensional space,” in ICML, 2000.
[12] J. Kober, A. Wilhelm, E. Oztop, and J. Peters, “Reinforcement learning to adjust parametrized motor primitives to new situations,” Autonomous Robots, vol. 33, no. 4, pp. 361–379, 2012.
[13] A. Gijsberts and G. Metta, “Real-time model learning using incremental sparse spectrum gaussian process regression,” Neural Networks, vol. 41, pp. 59–69, 2013.
[14] J. Snoek, H. Larochelle, and R. P. Adams, “Practical bayesian optimization of machine learning algorithms,” in NIPS, 2012.
[15] O. Kroemer, R. Detry, J. Piater, and J. Peters, “Combining active learning and reactive control for robot grasping,” Robotics and Autonomous Systems, vol. 58, no. 9, pp. 1105–1116, 2010.
[16] D. J. Lizotte, T. Wang, M. H. Bowling, and D. Schuurmans, “Automatic gait optimization with gaussian process regression,” in IJCAI, 2007.
[17] R. Calandra, N. Gopalan, A. Seyfarth, J. Peters, and M. P. Deisenroth, Proceedings of the 8th International Conference on Learning and Intelligent Optimization. Cham: Springer International Publishing, 2014, ch. Bayesian Gait Optimization for Bipedal Locomotion, pp. 274–290.
[18] C. E. Rasmussen and Z. Ghahramani, “Infinite mixtures of gaussian process experts,” in NIPS. MIT Press, 2002, pp. 881–888.
[19] S. Duane, A. D. Kennedy, B. Pendleton, and D. Roweth, “Hybrid monte carlo,” Physics Letters B, vol. 195, pp. 216–222, 1987.
[20] M. P. Deisenroth, D. Fox, and C. E. Rasmussen, “Gaussian processes for data-efficient learning in robotics and control,” PAMI, vol. 37, no. 2, pp. 408–423, 2015.
[21] S. Sun, “Infinite mixtures of multivariate gaussian processes,” in ICMLC, 2013, pp. 1011–1016.
[22] M. P. Deisenroth, P. Englert, J. Peters, and D. Fox, “Multi-task policy search for robotics,” in ICRA, 2014.