Learning the Dynamics of Articulated Tracked Vehicles
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 32799
Learning the Dynamics of Articulated Tracked Vehicles

Authors: Mario Gianni, Manuel A. Ruiz Garcia, Fiora Pirri

Abstract:

In this work, we present a Bayesian non-parametric approach to model the motion control of ATVs. The motion control model is based on a Dirichlet Process-Gaussian Process (DP-GP) mixture model. The DP-GP mixture model provides a flexible representation of patterns of control manoeuvres along trajectories of different lengths and discretizations. The model also estimates the number of patterns, sufficient for modeling the dynamics of the ATV.

Keywords: Dirichlet processes, Gaussian processes, robot control learning, tracked vehicles.

Digital Object Identifier (DOI): doi.org/10.5281/zenodo.1124704

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1728

References:


[1] M. Gianni, F. Ferri, M. Menna, and F. Pirri, “Adaptive robust three-dimensional trajectory tracking for actively articulated tracked vehicles,” Journal of Field Robotics, pp. n/a–n/a, 2015.
[Online]. Available: http://dx.doi.org/10.1002/rob.21584
[2] J. Joseph, F. Doshi-Velez, A. S. Huang, and N. Roy, “A bayesian nonparametric approach to modeling motion patterns,” Autonomous Robots, vol. 31, no. 4, pp. 383–400, 2011.
[Online]. Available: http://dx.doi.org/10.1007/s10514-011-9248-x
[3] W. Wei, H.and Lu, P. Zhu, S. Ferrari, R. H. Klein, S. Omidshafiei, and J. P. How, “Camera control for learning nonlinear target dynamics via bayesian nonparametric dirichlet-process gaussian-process (dp-gp) models,” in IROS, 2014, pp. 95–102.
[4] Bluebotics, “Absolem surveillance & rescue,” http://www.bluebotics. com/mobile-robotics/absolem/, 2011.
[5] D. Nguyen-Tuong and J. Peters, “Model learning for robot control: a survey,” Cognitive Processing, vol. 12, no. 4, pp. 319–340, 2011.
[6] M. P. Deisenroth, G. Neumann, and J. Peters, “A survey on policy search for robotics,” Foundations and Trends in Robotics, vol. 2, no. 12, pp. 1–142, 2011.
[7] J. S. Cruz, D. Kuli´c, and W. Owen, Proceedings of the Second International Conference on Autonomous and Intelligent Systems. Berlin, Heidelberg: Springer Berlin Heidelberg, 2011, ch. Online Incremental Learning of Inverse Dynamics Incorporating Prior Knowledge, pp. 167–176.
[8] D. Nguyen-Tuong, B. Scholkopf, and J. Peters, “Sparse online model learning for robot control with support vector regression,” in IROS, 2009, pp. 3121–3126.
[9] J. de la Cruz, W. Owen, and D. Kulic, “Online learning of inverse dynamics via gaussian process regression,” in IROS, 2012, pp. 3583–3590.
[10] A. J. Ijspeert, J. Nakanishi, H. Hoffmann, P. Pastor, and S. Schaal, “Dynamical movement primitives: Learning attractor models for motor behaviors,” Neural Comput., vol. 25, no. 2, pp. 328–373, 2013.
[11] S. Vijayakumar and S. Schaal, “Locally weighted projection regression: An o (n) algorithm for incremental real time learning in high dimensional space,” in ICML, 2000.
[12] J. Kober, A. Wilhelm, E. Oztop, and J. Peters, “Reinforcement learning to adjust parametrized motor primitives to new situations,” Autonomous Robots, vol. 33, no. 4, pp. 361–379, 2012.
[13] A. Gijsberts and G. Metta, “Real-time model learning using incremental sparse spectrum gaussian process regression,” Neural Networks, vol. 41, pp. 59–69, 2013.
[14] J. Snoek, H. Larochelle, and R. P. Adams, “Practical bayesian optimization of machine learning algorithms,” in NIPS, 2012.
[15] O. Kroemer, R. Detry, J. Piater, and J. Peters, “Combining active learning and reactive control for robot grasping,” Robotics and Autonomous Systems, vol. 58, no. 9, pp. 1105–1116, 2010.
[16] D. J. Lizotte, T. Wang, M. H. Bowling, and D. Schuurmans, “Automatic gait optimization with gaussian process regression,” in IJCAI, 2007.
[17] R. Calandra, N. Gopalan, A. Seyfarth, J. Peters, and M. P. Deisenroth, Proceedings of the 8th International Conference on Learning and Intelligent Optimization. Cham: Springer International Publishing, 2014, ch. Bayesian Gait Optimization for Bipedal Locomotion, pp. 274–290.
[18] C. E. Rasmussen and Z. Ghahramani, “Infinite mixtures of gaussian process experts,” in NIPS. MIT Press, 2002, pp. 881–888.
[19] S. Duane, A. D. Kennedy, B. Pendleton, and D. Roweth, “Hybrid monte carlo,” Physics Letters B, vol. 195, pp. 216–222, 1987.
[20] M. P. Deisenroth, D. Fox, and C. E. Rasmussen, “Gaussian processes for data-efficient learning in robotics and control,” PAMI, vol. 37, no. 2, pp. 408–423, 2015.
[21] S. Sun, “Infinite mixtures of multivariate gaussian processes,” in ICMLC, 2013, pp. 1011–1016.
[22] M. P. Deisenroth, P. Englert, J. Peters, and D. Fox, “Multi-task policy search for robotics,” in ICRA, 2014.