Search results for: anti%20corrosion
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 2128

Search results for: anti%20corrosion

1528 Potential Impact of Sodium Salicylate Nanoemulsion on Expression of Nephrin in Nephrotoxic Experimental Rat

Authors: Nadia A. Mohamed, Zakaria El-Khayat, Wagdy K. B. Khalil, Mehrez E. El-Naggar

Abstract:

Drug nephrotoxicity is still a problem for patients who have taken drugs for elongated periods or permanently. Ultrasound-assisted sol−gel method was used to prepare hollow structured poroussilica nanoemulsion loaded with sodium salicylate as a model drug. The work was extended to achieve the target of the current work via investigating the protective role of this nanoemulsion model as anti-inflammatory drug or ginger for its antioxidant effect against cisplatin-induced nephrotoxicity in male albino rats. The results clarify that the nanoemulsion model was synthesized using ultrasonic assisted with small size and well stabilization as proved by TEM and DLS analysis. Additionally, blood urea nitrogen (BUN), Serum creatinine (SC) and Urinary total protein (UTP) were increased, and the level of creatinine clearance (Crcl) was decreased. All those were met with disorders in oxidative stress and downregulation in the expression of the nephrin gene. Also, histopathological changes of the kidney tissue were observed. These changes back to normal by treatment with silica nanoparticles loaded sodium salicylate (Si-Sc-NPs), ginger or both. Conclusions oil/water nanoemulsion of (Si-Sc NPs) and ginger showed a protective and promising preventive strategy against nephrotoxicity due to their antioxidant and anti-inflammatory effects, and that offers a new approach in attenuating drug induced nephrotoxicity.

Keywords: sodium salicylate nanoencapsulation, nephrin mRNA, drug nephrotoxicity, cisplatin, experimental rats

Procedia PDF Downloads 188
1527 Development of Ecofriendly Ionic Liquid Modified Reverse Phase Liquid Chromatography Method for Simultaneous Determination of Anti-Hyperlipidemic Drugs

Authors: Hassan M. Albishri, Fatimah Al-Shehri, Deia Abd El-Hady

Abstract:

Among the analytical techniques, reverse phase liquid chromatography (RPLC) is currently used in pharmaceutical industry. Ecofriendly analytical chemistry offers the advantages of decreasing the environmental impact with the advantage of increasing operator safety which constituted a topic of industrial interest. Recently, ionic liquids have been successfully used to reduce or eliminate the conventional organic toxic solvents. In the current work, a simple and ecofriendly ionic liquid modified RPLC (IL-RPLC) method has been firstly developed and compared with RPLC under acidic and neutral mobile phase conditions for simultaneous determination of atorvastatin-calcium, rosuvastatin and simvastatin. Several chromatographic effective parameters have been changed in a systematic way. Adequate results have been achieved by mixing ILs with ethanol as a mobile phase under neutral conditions at 1 mL/min flow rate on C18 column. The developed IL-RPLC method has been validated for the quantitative determination of drugs in pharmaceutical formulations. The method showed excellent linearity for analytes in a wide range of concentrations with acceptable precise and accurate data. The current IL-RPLC technique could have vast applications particularly under neutral conditions for simple and greener (bio)analytical applications of pharmaceuticals.

Keywords: ionic liquid, RPLC, anti-hyperlipidemic drugs, ecofriendly

Procedia PDF Downloads 239
1526 Assesment of Genetic Fidelity of Micro-Clones of an Aromatic Medicinal Plant Murraya koenigii (L.) Spreng

Authors: Ramesh Joshi, Nisha Khatik

Abstract:

Murraya koenigii (L.) Spreng locally known as “Curry patta” or “Meetha neem” belonging to the family Rutaceae that grows wildly in Southern Asia. Its aromatic leaves are commonly used as the raw material for traditional medicinal formulations in India. The leaves contain essential oil and also used as a condiment. Several monomeric and binary carbazol alkaloids present in the various plant parts. These alkaloids have been reported to possess anti-microbial, mosquitocidal, topo-isomerase inhibition and antioxidant properties. Some of the alkaloids reported in this plant have showed anti carcinogenic and anti-diabetic properties. The conventional method of propagation of this tree is limited to seeds only, which retain their viability for only a short period. Hence, a biotechnological approach might have an advantage edging over traditional breeding as well as the genetic improvement of M. koenigii within a short period. The development of a reproducible regeneration protocol is the prerequisite for ex situ conservation and micropropagation. An efficient protocol for high frequency regeneration of in vitro plants of Murraya koenigii via different explants such as- nodal segments, intermodal segments, leaf, root segments, hypocotyle, cotyledons and cotyledonary node explants is described. In the present investigation, assessment of clonal fidelity in the micropropagated plantlets of Murraya koenigii was attempted using RAPD and ISSR markers at different pathways of plant tissue culture technique. About 20 ISSR and 40 RAPD primers were used for all the samples. Genomic DNA was extracted by CTAB method. ISSR primer were found to be more suitable as compared to RAPD for the analysis of clonal fidelity of M. koenigii. The amplifications however, were finally performed using RAPD, ISSR markers owing to their better performance in terms of generation of amplification products. In RAPD primer maximum 75% polymorphism was recorded in OPU-2 series which exhibited out of 04 scorable bands, three bands were polymorphic with a band range of size 600-1500 bp. In ISSR primers the UBC 857 showed 50% polymorphism with 02 band were polymorphic of band range size between 400-1000 bp.

Keywords: genetic fidelity, Murraya koenigii, aromatic plants, ISSR primers

Procedia PDF Downloads 477
1525 Biosynthesis of a Nanoparticle-Antibody Phthalocyanine Photosensitizer for Use in Targeted Photodynamic Therapy of Cervical Cancer

Authors: Elvin P. Chizenga, Heidi Abrahamse

Abstract:

Cancer cell resistance to therapy is the main cause of treatment failures and the poor prognosis of cancer convalescence. The progression of cervical cancer to other parts of the genitourinary system and the reported recurrence rates are overwhelming. Current treatments, including surgery, chemo and radiation have been inefficient in eradicating the tumor cells. These treatments are also associated with poor prognosis and reduced quality of life, including fertility loss. This has inspired the need for the development of new treatment modalities to eradicate cervical cancer successfully. Photodynamic Therapy (PDT) is a modern treatment modality that induces cell death by photochemical interactions of light and a photosensitizer, which in the presence of molecular oxygen, yields a set of chemical reactions that generate Reactive Oxygen Species (ROS) and other free radical species causing cell damage. Enhancing PDT using modified drug delivery can increase the concentration of the photosensitizer in the tumor cells, and this has the potential to maximize its therapeutic efficacy. In cervical cancer, all infected cells constitutively express genes of the E6 and E7 HPV viral oncoproteins, resulting in high concentrations of E6 and E7 in the cytoplasm. This provides an opportunity for active targeting of cervical cancer cells using immune-mediated drug delivery to maximize therapeutic efficacy. The use of nanoparticles in PDT has also proven effective in enhancing therapeutic efficacy. Gold nanoparticles (AuNps) in particular, are explored for their use in biomedicine due to their biocompatibility, low toxicity, and enhancement of drug uptake by tumor cells. In this present study, a biomolecule comprising of AuNPs, anti-E6 monoclonal antibodies, and Aluminium Phthalocyanine photosensitizer was synthesized for use in targeted PDT of cervical cancer. The AuNp-Anti-E6-Sulfonated Aluminium Phthalocyanine mix (AlPcSmix) photosensitizing biomolecule was synthesized by coupling AuNps and anti-E6 monoclonal antibodies to the AlPcSmix via Polyethylene Glycol (PEG) chemical links. The final product was characterized using Transmission Electron Microscope (TEM), Zeta Potential, Uv-Vis Spectrophotometry, Fourier Transform Infrared Spectroscopy (FTIR), and X-ray diffraction (XRD), to confirm its chemical structure and functionality. To observe its therapeutic role in treating cervical cancer, cervical cancer cells, HeLa cells were seeded in 3.4 cm² diameter culture dishes at a concentration of 5x10⁵ cells/ml, in vitro. The cells were treated with varying concentrations of the photosensitizing biomolecule and irradiated using a 673.2 nm wavelength of laser light. Post irradiation cellular responses were performed to observe changes in morphology, viability, proliferation, cytotoxicity, and cell death pathways induced. Dose-Dependent response of the cells to treatment was demonstrated as significant morphologic changes, increased cytotoxicity, and decreased cell viability and proliferation This study presented a synthetic biomolecule for targeted PDT of cervical cancer. The study suggested that PDT using this AuNp- Anti-E6- AlPcSmix photosensitizing biomolecule is a very effective treatment method for the eradication of cervical cancer cells, in vitro. Further studies in vivo need to be conducted to support the use of this biomolecule in treating cervical cancer in clinical settings.

Keywords: anti-E6 monoclonal antibody, cervical cancer, gold nanoparticles, photodynamic therapy

Procedia PDF Downloads 107
1524 The Preventive Effect of Date Palm (Phoenixdactylifera) Seed and Fruit Hydroalcoholic Extracts on Carrageenan-Induced Inflammation in Male Rat’s Hind Paw

Authors: Siavash Azarbani

Abstract:

Background and Objective: The side effects of NSAIDS drugs have caused the increasing interest of scientists in herbal medicines as alternative treatment. In this study, the effect of anti inflammatory of seed and fruit of date palm hydroalcolic extracts, due to having antioxidants, was studied. Materials and Methods: In this study, the extraxts of date palm seed and fruit were prepared by the maceration method in 70% alcohol. Eighty male rats Wistar, divided into 10 groups of eight in each, 4 groups received different doses (100, 200, 400, and 600 mg/kg) of seed extract, and 4 other groups different doses (100, 200, 400, and 600 mg/kg) of fruits extract of the palm, and the positive control aspirin (300mg/kg) and the negative control group saline (5ml/kg) via injection intraperitoneally. Half an hour later, all animals received 100 µl of 1% carrageenan into the rats hind paw subcutaneous. The changes in rats paw edema was measured by plethysmometer every hour for five hours. Results: The effect of all of the doses of date palm seed extract on edema were less than aspirine (P<0.05). But there was no significant difference between the group that received 400 and 600 mg/kg of date palm fruit extract when compared with the aspirin group. The Dose 400 mg/kg of fruit extract showed the most anti-inflammatory effect, and it was assignded as the best dose. Conclusion: It is likely that with further studies on different model of animals and also on the human model, the palm fruit extract could be used for pain treatment.

Keywords: palm, inflamentory, date, aspirin, karageenan

Procedia PDF Downloads 106
1523 The Effectiveness of High-Frequency Repetitive Transcranial Magnetic Stimulation in Persistent Somatic Symptoms Disorder: A Case Report Study

Authors: Mohammed Khamis Albalushi

Abstract:

Background: Somatic symptoms disorders are usually comorbid with depressive disorders despite the fact that there is little evidence for effective treatment for it. Repetitive transcranial magnetic stimulation (rTMS) has been approved by the FDA for mildly resistant depression. From this point, we hypothesized that rTMS delivered over the prefrontal cortex (PFC) may be useful in somatic symptoms disorder. Therefore, in our case report, we want to shed light on the potential effectiveness of rTMS in somatic symptoms disorder. Case Report: A 65-year-old Omani female with multiple medical comorbidities on multiple medications. She presented complaining of multiple somatic complaints in the last 2 years after visiting multiple clinics and underwent several specialists’ examinations, investigations and procedures for somatic treatments; all of them were normal. Then patient was seen by a different psychiatric clinic; multiple anti-depressant and adjuvant anti-psychotic medications were tried, patient still did not improve. The patient was admitted to the hospital for observation and management. Initially, she was preoccupied with her somatic complaint and kept on Fluoxetine and Olanzapine along with that, topiramate was added, but still with minimal improvement. Then rTMS was added to her management plan following Intermittent theta burst (iTBS) rTMS protocol. After completing all sessions of rTMS, the patient was recovering from all her symptoms, and no complaints were reported from her. Conclusion: Our case highlights the importance of investigating more thoroughly in rTMS as a treatment option for Persistent Somatic symptoms Disorder.

Keywords: rTMS, somatic symptoms disorder, resistive cases, TMS

Procedia PDF Downloads 48
1522 Ship Roll Reduction Using Water-Flow Induced Coriolis Effect

Authors: Mario P. Walker, Masaaki Okuma

Abstract:

Ships are subjected to motions which can disrupt on-board operations and damage equipment. Roll motion, in particular, is of great interest due to low damping conditions which may lead to capsizing. Therefore finding ways to reduce this motion is important in ship designs. Several techniques have been investigated to reduce rolling. These include the commonly used anti-roll tanks, fin stabilizers and bilge keels. However, these systems are not without their challenges. For example, water-flow in anti-roll tanks creates complications, and for fin stabilizers and bilge keels, an extremely large size is required to produce any significant damping creating operational challenges. Additionally, among these measures presented above only anti-roll tanks are effective in zero forward motion of the vessels. This paper proposes and investigates a method to reduce rolling by inducing Coriolis effect using water-flow in the radial direction. Motion in the radial direction of a rolling structure will induce Coriolis force and, depending on the direction of flow will either amplify or attenuate the structure. The system is modelled with two degrees of freedom, having rotational motion for parametric rolling and radial motion of the water-flow. Equations of motion are derived and investigated. Numerical examples are analyzed in detail. To demonstrate applicability parameters from a Ro-Ro vessel are used as extensive research have been conducted on these over the years. The vessel is investigated under free and forced roll conditions. Several models are created using various masses, heights, and velocities of water-flow at a given time. The proposed system was found to produce substantial roll reduction which increases with increase in any of the parameters varied as stated above, with velocity having the most significant effect. The proposed system provides a simple approach to reduce ship rolling. Water-flow control is very simple as the water flows in only one direction with constant velocity. Only needing to control the time at which the system should be turned on or off. Furthermore, the proposed system is effective in both forward and zero forward motion of the ship, and provides no hydrodynamic drag. This is a starting point for designing an effective and practical system. For this to be a viable approach further investigations are needed to address challenges that present themselves.

Keywords: Coriolis effect, damping, rolling, water-flow

Procedia PDF Downloads 439
1521 A Preliminary Randomized Controlled Trial of Pure L-Ascorbic Acid with Using a Needle-Free and Micro-Needle Mesotherapy in Treatment of Anti-Aging Procedure

Authors: M. Zasada, A. Markiewicz, A. Erkiert-Polguj, E. Budzisz

Abstract:

The epidermis is a keratinized stratified squamous epithelium covered by the hydro-lipid barrier. Therefore, active substances should be able to penetrate through this hydro-lipid coating. L-ascorbic acid is one of the vitamins which plays an important role in stimulation fibroblast to produce collagen type I and in hyperpigmentation lightening. Vitamin C is a water-soluble antioxidant, which protects skin from oxidation damage and rejuvenates photoaged skin. No-needle mesotherapy is a non-invasive rejuvenation technique depending on electric pulses, electroporation, and ultrasounds. These physicals factors result in deeper penetration of cosmetics. It is important to increase the penetration of L-ascorbic acid, thereby increasing the spectrum of its activity. The aim of the work was to assess the effectiveness of pure L-ascorbic acid activity in anti-aging therapy using a needle-free and micro-needling mesotherapy. The study was performed on a group of 35 healthy volunteers in accordance with the Declaration of Helsinki of 1964 and agreement of the Ethics Commissions no RNN/281/16/KE 2017. Women were randomized to mesotherapy or control group. Control group applied topically 2,5 ml serum containing 20% L-ascorbic acid with hydrate from strawberries, every 10 days for a period of 9 weeks. No-needle mesotherapy, on the left half of the face and micro-needling on the right with the same serum, was done in mesotherapy group. The pH of serum was 3.5-4, and the serum was prepared directly prior to the facial treatment. The skin parameters were measured at the beginning and before each treatment. The measurement of the forehead skin was done using Cutometer® (measurement of skin elasticity and firmness), Corneometer® (skin hydration measurement), Mexameter® (skin tone measurement). Also, the photographs were taken by Fotomedicus system. Additionally, the volunteers fulfilled the questionnaire. Serum was tested for microbiological purity and stability after the opening of the cosmetic. During the study, all of the volunteers were taken care of a dermatologist. The regular application of the serum has caused improvement of the skin parameters. Respectively, after 4 and 8 weeks improvement in hydration and elasticity has been seen (Corneometer®, Cutometer® results). Moreover, the number of hyper-pigmentated spots has decreased (Mexameter®). After 8 weeks the volunteers has claimed that the tested product has smoothing and moisturizing features. Subjective opinions indicted significant improvement of skin color and elasticity. The product containing the L-ascorbic acid used with intercellular penetration promoters demonstrates higher anti-aging efficiency than control. In vivo studies confirmed the effectiveness of serum and the impact of the active substance on skin firmness and elasticity, the degree of hydration and skin tone. Mesotherapy with pure L-ascorbic acid provides better diffusion of active substances through the skin.

Keywords: anti-aging, l-ascorbic acid, mesotherapy, promoters

Procedia PDF Downloads 251
1520 Curative Effect of Blumea lacera Leaves on Experimental Haemorrhoids in Rats

Authors: Priyanka Sharma, Tarkewshwar Dubey, Hemalatha Siva

Abstract:

Hemorrhoids are one of the most common anorectal diseases around the world. Severalfactors are involved in causing hemorrhoids including irregularbowel function (constipation, diarrhea), exercise, gravity, low fiberdiet, pregnancy, obesity, high abdominal pressure, prolongedsitting, genetic factors, and aging. Pain, bleeding, itching,swelling and anal discharge are the symptoms of the disease. Due to limitedmodern pharmacotherapeutic options available for treatment, theherbal medicines remain the choice of therapy. Blumea lacera (Burm f.) DC. belonging to the Asteraceae family is a common plain land weed of Bangladesh. Traditionally it has been used for treatment of hemorrhoids.Considering the above fact, present study was aimed to validate the ethnomedicinal use of B. lacera leaves on experimental hemorrhoids in rats. The anti-hemorrhoid activity was performed by using croton oil induced rat models. The parameters studied were assessment of TNF-α and IL-6, Evans blue exudation, macroscopic severity score, recto-anal coefficient, histomorphological scores. Also, in vivo antioxidant parameters and histopathological studies were also performed. All paramaters exhibited significant anti-hemorrhoid activity. Moreover ethanolic extract of B. lacera (EBL) leaves 400mg/kg showed ameliorative effect oncroton oil induced hemorrhoids.In conclusion, EBL exhibitedbeneficial effect on croton oil- induced hemorrhoids and validates its ethnomedicinal use in treatment of piles.

Keywords: haemorrhoids, IL-6, piles, TNF-α

Procedia PDF Downloads 275
1519 Smart Security Concept in the East Mediterranean: Anti Asymmetrical Area Denial (A3D)

Authors: Serkan Tezgel

Abstract:

The two qualities of the sea, as a medium of transportation and as a resource, necessitate maritime security for economic stability and good order at sea. The borderless nature of the sea makes it one of the best platforms to contribute to regional peace and international order. For this reason, the establishment of maritime security in East Mediterranean will enhance the security-peace-democracy triangle in the region. This paper proposes the application of the Smart Security Concept in the East Mediterranean. Smart Security aims to secure critical infrastructure, such as hydrocarbon platforms, against asymmetrical threats. The concept is based on Anti Asymmetrical Area Denial (A3D) which necessitates limiting freedom of action of maritime terrorists and piracy by founding safe and secure maritime areas through sea lines of communication using short range capabilities. Smart Security is a regional maritime cooperation concept for the narrow seas. Cooperation and interoperability are essential attributes of this regional security concept. Therefore, multinational excellence centers such as Multinational Maritime Security Center of Excellence-Aksaz in Turkey, which will determine necessary capabilities and plan/coordinate workshops, training and exercises, are bound to be the principal characteristic of Smart Security concept and similar regional concepts. Smart Security, a crucial enabler of energy and regional security, can provide an enduring approach for operating in the challenging environment of narrow seas and for countering asymmetrical threats.

Keywords: security, cooperation, asymmetrical, area denial

Procedia PDF Downloads 793
1518 Combating Money Laundering and Inroads into Banking Secrecy: Evidence from Malaysia

Authors: Aspalella A. Rahman

Abstract:

It is widely accepted that the investigation of money laundering and the tracing and confiscation of criminal proceeds have intruded into the principles of banking secrecy. The inroads into banking secrecy present serious threats to democracy, and more importantly, to the traditional banker-customer relationship. It is generally accepted that the fight against money laundering is in conflict with the secrecy rule. Banking secrecy is a customer privilege whereas combating crime is critical for public safety and security. Indeed, achieving a proper balance is a desirable goal. But how we go about achieving such a balance is a question encountered by many law enforcement authorities. Therefore, this paper examines the effect of disclosure under the Malaysian anti-money laundering laws on the traditional duty of banks to keep the customer’s information confidential. It also analyzes whether the Malaysian laws provide a right balance between a duty to keep customer’s information secret and a duty to disclose such information in the fight against money laundering. On closer inspection, it is submitted that the Malaysian laws provide sufficient safeguards to ensure that the disclosure of customer’s information is carried out in a manner that is not prejudicial to the interest of legitimate customers. This is a positive approach that could protect the innocent customers from being mistreated by the law. Ultimately, it can be said that the growing threat of global money laundering and terrorism makes the overriding of banking secrecy justified because without a flow of information from the banks, the effective prevention of the menace is not possible.

Keywords: anti-money laundering law, banker-customer relationship, banking secrecy, confidentiality, money laundering

Procedia PDF Downloads 406
1517 The Ra 9262 (Anti-Violence Against Women and Their Children Act of 2004) in the Literature Classroom via the Movie ‘Enough’

Authors: Jay Neil Garciso Verano, Peter Rosales Bobiles

Abstract:

This study tried to integrate RA 9262 in literature through the use of film. It identified RA 9262 provisions reflected in the students’ concepts in their oral participation and written outputs and pointed out different attitudes toward violence against women and respect to women as shaped by the film through their responses. Four Literature 121 (World Literature) classes with more or less similar characteristics participated in this study. The discussion of Paulette Kelly’s I Got Flowers Today took place during the first session while the viewing of the film Enough and discussion of the film followed to enrich and bolster students’ concepts and awareness on violence against women and to introduce RA 9262 provisions. The students’ attitudes toward violence against women and respect to women were lifted from the students’ oral and written responses. The film Enough presented eight provisions from RA 9262 reflected in students’ concepts which centered on the acts of violence against women tarnishing women’s rights and dignity. There were 25 attitudes toward violence against women and respect to women which surfaced, 11 of which are what initiate the acts, seven tell about the results from or effects of violence against women, and another seven exemplify respect to women. With the findings, it can be viewed that RA 9262 can be integrated in a literature course to awaken students’ minds on the prevalent issues on violating women’s rights and dignity. The discussion of Paulette Kelly’s I Got Flowers Today reinforced by the viewing of Enough deduced issues on the violation of women’s rights and dignity, attitudes toward violence against women, and students’ perception with regard respect to women.

Keywords: anti-violence against women, literature, film, enough, feminism

Procedia PDF Downloads 362
1516 Physiological and Molecular Characterizations of Ricinus Communis Genotypes under Cadmium Stress

Authors: Rini Rahul, Manoj Kumar

Abstract:

Cadmium (Cd) is a poisonous trace metal, which is responsible for excess reactive oxygen species generation (ROS) in plants, thereby adversely affecting their productivity and commercial potential. Ricinus communis (castor) is an industry-efficient non-edible bioenergy crop used for phytoremediation and re-vegetation. We have determined the total Cd content in castor genotypes and established a relationship between the Cd tolerance mechanism and physiological parameters like chlorophyll fluorescence, the total photosynthetic activity, chlorophyll and carotenoid content as well as ROS generation and malondialdehyde content. This study is an effort to comprehend the interrelation between Cd toxicity (control, 250 µM and 500 µM), proline, various ROS scavenging enzymes (anti-oxidative in nature), nicotianamine synthase (NAS) and Natural resistance-associated macrophage protein (NRAMP) gene. The antioxidant enzyme activity increased for WM hence conferring Cd toxicity in this genotype. RcNRAMP genes showed differential expression in GCH2 and WM genotypes; this can also be one of the reasons for Cd toxicity and sensitivity in WM and GCH2, respectively. The cause of pronounced Cd tolerance in WM leaves can be because of enhanced expression of RcNAS1, RcNAS2 and RcNAS3 genes. Our results demonstrate that there is an interrelation between Cd toxicity (control, 250 µM and 500 µM), proline, various ROS scavenging enzymes (anti-oxidative in nature), NAS and NRAMP gene.

Keywords: ricinus communis, cadmium, reactive oxygen species, nicotianamine synthase, NRAMP, malondialdehyde

Procedia PDF Downloads 55
1515 Anti-Inflammatory Effect of Carvedilol 1% Ointment in Topical Application to the Animal Model

Authors: Berina Pilipović, Saša Pilipović, Maja Pašić-Kulenović

Abstract:

Inflammation is the body's response to impaired homeostasis caused by infection, injury or trauma resulting in systemic and local effects. Inflammation causes the body's response to injury and is characterized by a series of events including inflammatory response, response to pain receptors and the recovery process. Inflammation can be acute and chronic. The inflammatory response is described in three different phases. Free radical is an atom or molecule that has the unpaired electron and is therefore generally very reactive chemical species. Biologically important example of reaction with free radicals is called Lipid peroxidation (LP). Lipid peroxidation reactions occur in biological membranes, and if at the outset is not stopped with the action of antioxidants, it will bring damage to the membrane, which results in partial or complete loss of their physiological functions. Calcium antagonists and beta-adrenergic receptor antagonists are known drugs, and for many years and widely used in the treatment of cardiovascular diseases. Some of these compounds also show antioxidant activity. The mechanism of antioxidant activities of calcium antagonists and beta-blockers is unknown, since their structure varies widely. This research investigated the possible local anti-inflammatory activity of ointments containing 1% carvedilol in the white petrolatum USP. Ear inflammation was induced by 3% croton oil acetone solution, in quantity of 10 µl on both mouse ears. Albino Swiss mouse (n = 8) are treated with 2.5 mg/ear ointment, and control group was treated on the same way as previous with hydrocortisone 1% ointment (2.5 mg/ear). The other ear of the same animal was used as control one. Ointments were administered once per day, on the left ear. After treatment, ears were observed for three days. After three days, we measured mass (mg) of 6 mm ear punch of treated and controlled ears. The results of testing anti-inflammatory effects of ointments with carvedilol in the mouse ear model show stronger observed effect than ointment with 1% hydrocortisone in the same basis. Identical results were confirmed by the difference between the mass of 6 mm ears punch. The results were also confirmed by histological examination. Ointments with carvedilol showed significant reduction of the inflammation process caused by croton oil on the mouse inflammation model.

Keywords: antioxidant, carvedilol, inflammation, mouse ear

Procedia PDF Downloads 220
1514 Therapeutic Evaluation of Bacopa Monnieri Extract on Liver Fibrosis in Rats

Authors: Yu Wen Wang, Shyh Ming Kuo, Hsia Ying Cheng, Yu Chiuan Wu

Abstract:

Liver fibrosis is caused by the activation of hepatic stellate cells in the liver to secrete excessive and deposition of extracellular matrix. In recent years, many treatment strategies have been developed to reduce the activation of hepatic stellate cells and therefore to increase the decomposition of extracellular matrix. Bacopa monnieri, an herbaceous plant of the scrophulariaceae, containing saponins and glycosides, which with antioxidant, anti-inflammation, pain relief and free radical scavenging characteristics. This study was to evaluate the inhibition of hepatic stellate cell activity by Bacopa monnieri extract and its therapeutic potential in treating thioacetamide-induced liver fibrosis in rats. The results showed that the IC50 of Bacopa monnieri extract was 0.39 mg/mL. Bacopa monnieri extract could effectively reduce H2O2-induced hepatic stellate cells inflammation. In the TAA-induced liver fibrosis animal studies, albumin secretion recovered to normal level after treated with Bacopa monnieri extract for 2-w, and fibrosis related proteins, α-SMA and TGF-1levels decreased indicating the extract exerted therapeutic effect on the liver fibrosis. However, inflammatory factors TNF- obviously decreased after 4-w treatment. In summary, we could successfully extract the main component-Bacopaside I from the plant and acquired a potential therapy using this component in treating TAA-induced liver fibrosis in rat.

Keywords: anti-inflammatory, Bacopa monnieri, fibrosis, hepatic stellate cells, water extract

Procedia PDF Downloads 91
1513 A Novel PfkB Gene Cloning and Characterization for Expression in Potato Plants

Authors: Arfan Ali, Idrees Ahmad Nasir

Abstract:

Potato (Solanum tuberosum) is an important cash crop and popular vegetable in Pakistan and throughout the world. Cold storage of potatoes accelerates the conversion of starch into reduced sugars (glucose and fructose). This process causes dry mass and bitter taste in the potatoes that are not acceptable to end consumers. In the current study, the phosphofructokinase B gene was cloned into the pET-30 vector for protein expression and the pCambia-1301 vector for plant expression. Amplification of a 930bp product from an E. coli strain determined the successful isolation of the phosphofructokinase B gene. Restriction digestion using NcoI and BglII along with the amplification of the 930bp product using gene specific primers confirmed the successful cloning of the PfkB gene in both vectors. The protein was expressed as a His-PfkB fusion protein. Western blot analysis confirmed the presence of the 35 Kda PfkB protein when hybridized with anti-His antibodies. The construct Fani-01 was evaluated transiently using a histochemical gus assay. The appearance of blue color in the agroinfiltrated area of potato leaves confirmed the successful expression of construct Fani-01. Further, the area displaying gus expression was evaluated for PfkB expression using ELISA. Moreover, PfkB gene expression evaluated through transient expression determined successful gene expression and highlighted its potential utilization for stable expression in potato to reduce sweetening due to long-term storage.

Keywords: potato, Solanum tuberosum, transformation, PfkB, anti-sweetening

Procedia PDF Downloads 450
1512 Therapeutic Application of Light and Electromagnetic Fields to Reduce Hyper-Inflammation Triggered by COVID-19

Authors: Blanche Aguida, Marootpong Pooam, Nathalie Jourdan, Margaret Ahmad

Abstract:

COVID-19-related morbidity is associated with exaggerated inflammation and cytokine production in the lungs, leading to acute respiratory failure. The cellular mechanisms underlying these so-called ‘cytokine storms’ are regulated through the Toll-like receptor 4 (TLR4) signaling pathway and by reactive oxygen species (ROS). Both light (photobiomodulation) and magnetic fields (e.g., pulsed electromagnetic field) stimulation are non-invasive therapies known to confer anti-inflammatory effects and regulate ROS signaling pathways. Here we show that daily exposure to two 10-minute intervals of moderate-intensity infra-red light significantly lowered the inflammatory response induced via the TLR4 receptor signaling pathway in human cell cultures. Anti-inflammatory effects were likewise achieved by electromagnetic field exposure of cells to daily 10-minute intervals of either pulsed electromagnetic fields (PEMF) or to low-level static magnetic fields. Because current illumination and electromagnetic field therapies have no known side effects and are already approved for some medical uses, we have here developed protocols for verification in clinical trials of COVID 19 infection. These treatments are affordable, simple to implement, and may help to resolve the acute respiratory distress of COVID 19 patients both in the home and in the hospital.

Keywords: COVID 19, electromagnetic fields therapy, inflammation, photobiomodulation therapy

Procedia PDF Downloads 124
1511 Silver Nanoparticles Loaded Cellulose Nanofibers (Cnf)/mesoporous Bioactive Glass Hydrogels For Periodontitis Treatment

Authors: Anika Pallapothu

Abstract:

Periodontitis, a severe gum disease, poses a significant threat to the integrity of bone and soft tissues supporting teeth, primarily initiated by bacterial accumulation around the gum line. Conventional treatments like scaling/root planning and plaque removal are widely employed, but integrating modern technologies such as nanotechnology holds promise for innovative therapeutic approaches. This study explores the utilization of silver nanoparticles encapsulated within cellulose nanofiber (CNF) and mesoporous bioactive glass hydrogel matrices for periodontitis management. Silver nanoparticles exhibit potent antimicrobial properties by disrupting microbial cell membranes, inducing reactive oxygen species (ROS) generation, and interfering with vital cellular processes like ATP production and nucleic acid synthesis. Mesoporous bioactive glass, renowned for its high surface area, osteoconductive, and bioactivity, presents a favorable platform for pharmaceutical applications. Incorporating CNF enhances the properties of the hydrogel due to its biocompatibility, biodegradability, and water absorption capacity. The proposed composite material is anticipated to exert beneficial effects in periodontitis treatment by demonstrating antibacterial and anti-inflammatory activities, offering a promising avenue for future therapeutic interventions.

Keywords: periodontitis, cellulose nanofibers, silver nanoparticles, mesoporous bioactive glass, antibacterial activity, anti-inflammatory activity

Procedia PDF Downloads 30
1510 Encapsulated Bioflavonoids: Nanotechnology Driven Food Waste Utilization

Authors: Niharika Kaushal, Minni Singh

Abstract:

Citrus fruits fall into the category of those commercially grown fruits that constitute an excellent repository of phytochemicals with health-promoting properties. Fruits belonging to the citrus family, when processed by industries, produce tons of agriculture by-products in the form of peels, pulp, and seeds, which normally have no further usage and are commonly discarded. In spite of this, such residues are of paramount importance due to their richness in valuable compounds; therefore, agro-waste is considered a valuable bioresource for various purposes in the food sector. A range of biological properties, including anti-oxidative, anti-cancerous, anti-inflammatory, anti-allergenicity, and anti-aging activity, have been reported for these bioactive compounds. Taking advantage of these inexpensive residual sources requires special attention to extract bioactive compounds. Mandarin (Citrus nobilis X Citrus deliciosa) is a potential source of bioflavonoids with antioxidant properties, and it is increasingly regarded as a functional food. Despite these benefits, flavonoids suffer from a barrier of pre-systemic metabolism in gastric fluid, which impedes their effectiveness. Therefore, colloidal delivery systems can completely overcome the barrier in question. This study involved the extraction and identification of key flavonoids from mandarin biomass. Using a green chemistry approach, supercritical fluid extraction at 330 bar, temperature 40C, and co-solvent 10% ethanol was employed for extraction, and the identification of flavonoids was made by mass spectrometry. As flavonoids are concerned with a limitation, the obtained extract was encapsulated in polylactic-co-glycolic acid (PLGA) matrix using a solvent evaporation method. Additionally, the antioxidant potential was evaluated by the 2,2-diphenylpicrylhydrazyl (DPPH) assay. A release pattern of flavonoids was observed over time using simulated gastrointestinal fluids. From the results, it was observed that the total flavonoids extracted from the mandarin biomass were estimated to be 47.3 ±1.06 mg/ml rutin equivalents as total flavonoids. In the extract, significantly, polymethoxyflavones (PMFs), tangeretin and nobiletin were identified, followed by hesperetin and naringin. The designed flavonoid-PLGA nanoparticles exhibited a particle size between 200-250nm. In addition, the bioengineered nanoparticles had a high entrapment efficiency of nearly 80.0% and maintained stability for more than a year. Flavonoid nanoparticles showed excellent antioxidant activity with an IC50 of 0.55μg/ml. Morphological studies revealed the smooth and spherical shape of nanoparticles as visualized by Field emission scanning electron microscopy (FE-SEM). Simulated gastrointestinal studies of free extract and nanoencapsulation revealed the degradation of nearly half of the flavonoids under harsh acidic conditions in the case of free extract. After encapsulation, flavonoids exhibited sustained release properties, suggesting that polymeric encapsulates are efficient carriers of flavonoids. Thus, such technology-driven and biomass-derived products form the basis for their use in the development of functional foods with improved therapeutic potential and antioxidant properties. As a result, citrus processing waste can be considered a new resource that has high value and can be used for promoting its utilization.

Keywords: citrus, agrowaste, flavonoids, nanoparticles

Procedia PDF Downloads 100
1509 Prednisone and Its Active Metabolite Prednisolone Attenuate Lipid Accumulation in Macrophages

Authors: H. Jeries, N. Volkova, C. G. Iglesias, M. Najjar, M. Rosenblat, M. Aviram, T. Hayek

Abstract:

Background: Synthetic forms of glucocorticoids (e.g., prednisone, prednisolone) are anti-inflammatory drugs which are widely used in clinical practice. The role of glucocorticoids (GCs) in cardiovascular diseases including atherosclerosis is highly controversial, and their impact on macrophage foam cell formation is still unknown. Our aim was to investigate the effects of prednisone or its active metabolite, prednisolone, on macrophage oxidative stress and lipid metabolism using in-vivo, ex-vivo and in-vitro systems. Methods: The in-vivo study included C57BL/6 mice which were intraperitoneally injected with prednisone or prednisolone (5mg/kg) for 4 weeks, followed by lipid metabolism analyses in the mice aorta, and in peritoneal macrophages (MPM). In the ex-vivo study, we analyzed the effect of serum samples obtained from 9 healthy volunteers before or after treatment with oral prednisone (20mg for 5 days), on J774A.1 macrophage atherogenicity. In-vitro studies were conducted using J774A.1 macrophages, human monocyte derived macrophages (HMDM) and fibroblasts. Cells were incubated with increasing concentrations (0-200 ng/ml) of prednisone or prednisolone, followed by determination of cellular oxidative status, triglyceride and cholesterol metabolism. Results: Prednisone or prednisolone treatment resulted in a significant reduction in triglycerides and mainly in cholesterol cellular accumulation in MPM or in J774A.1 macrophages incubated with human serum. Similar resulted were noted in HMDM or in J774A.1 macrophages which were directly incubated with the GCs. These effects were associated with GCs inhibitory effect on triglycerides and cholesterol biosynthesis rates, throughout downregulation of diacylglycerol acyltransferase1 (DGAT1) expression, and of the sterol regulatory element binding protein (SREBP2) and HMGCR expression, respectively. In parallel to prednisone or prednisolone induced reduction in macrophage triglyceride content, paraoxonase 2 (PON2) expression was significantly upregulated. GCs-induced reduction of cellular triglyceride and cholesterol mass was mediated by the GCs receptors on macrophages since the GCs receptor antagonist (RU 486) abolished these effects. In fibroblasts, unlike macrophages, prednisone or prednisolone showed no anti-atherogenic effects. Conclusions: Prednisone or prednisolone are anti-atherogenic since they protected macrophages from lipid accumulation and foam cell formation.

Keywords: atherosclerosis, cholesterol, foam cell, macrophage, prednisone, prednisolone, triglycerides

Procedia PDF Downloads 128
1508 Dynamics of Antioxidant and Anti-Radical Activity of the Extracts of Certain Plants of Kazakhstan

Authors: A. Kazbekova, A. Kudaibergenov, G. Atazhanova, S. Adekenov

Abstract:

In recent years, it achieved some progress such a direction as to study the possibility of correlation between different types of biological activity. In particular, in our work, we consider questions such as: the impact of the qualitative composition of total substances in the example of plant extracts on antioxidant and antiradical activity, the presents of correlation between these types of activity, etc. It is known that there is a relationship between the values of optical density of working solutions of extracts and corresponding bioactivity in vitro, in particular, the antioxidant and hepatoprotective effects. In this study, we have identified that among some studied species of wormwood (Artemisia viridis Wild, Artemisia jacutica Drob, Artemisia annua L, Artemisia siversiana Wild, Artemisia adamsii Bess, Artemisia tianschanica, Artemisia obtusiloba Ledeb., Artemisia heptopotamica), as well as extracts of Inula caspica, Аjania tenuifolia, Abies sibirica, Galatella songorica, Mentha asiatica and Thymus mugodzharicus it was identified that the highest content of polyphenol compounds is in Thymus mugodzharicus. At the same time, we determined the antioxidant and antiradical activity, which was the highest for the Thymus mugodzharicus. Butylhydroxyanisole and ascorbic acid were used as comparison substances. Also, it was established that antioxidant and anti-radical activities depend on the concentration of the of all investigated samples. Based on obtained data, we believe that the extract of Thymus mugodzharicus can be recommended for further study on the antioxidant and antiradical activity in vivo, as well as the opportunity of this sample to demonstrate hepatoprotective effect. The study was sponsored by SANTO academic program.

Keywords: in vitro, in vivo, antioxidant, hepatoprotective effect

Procedia PDF Downloads 304
1507 Modulated Bioavailability of an Anti HIV Drug through a Self-Nanoemulsifying Drug Delivery System

Authors: Sunit Kumar Sahoo, Prakash Chandra Senapati

Abstract:

The main drawback to design drug delivery systems with BCS class II drugs is their low bioavailabilty due to their inherent low permeability characteristics. So the present investigation aspire to develop a self-nanoemulsifying drug delivery system (SNEDDS) of BCS class II anti HIV drug efavirenz (EFZ) using mixtures of non-ionic surfactant mixtures with the main objective to improve the oral bioavailability of said drug. Results obtained from solubility studies of EFZ in various expients utilized for construction of the pseudo ternary phase diagram containing surfactant mixtures. Surfactants in 1:1 combination are used with different co-surfactants in different ratio to delineate the area of monophasic region of the pseudo ternary phase diagram. The formulations which offered positive results in different thermodynamic stability studies were considered for percentage transmittance and turbidity analysis. The various characterization studies like the TEM analysis of post diluted SNEDDS formulations r confirmed the size in nanometric range (below 50 nm) and FT-IR studies confirmed the intactness of the drug the in the preconcentrate. The in vitro dissolution profile of SNEDDS showed that 80% drug was released within 30 min in case of optimized SNEDDS while it was approximately 18.3 % in the case of plain drug powder.. The Pharmacokinetic study using rat model revealed a 2.63 fold increase in AUC (0-∞) in comparison to plain EFZ suspension. The designed delivery system illustrated the confidence in creating a formulation of EFZ with enhanced bioavailability for better HIV treatment.

Keywords: efavirenz, self-nanoemulsifying, surfactant mixture, bioavailability

Procedia PDF Downloads 336
1506 Anti-Osteoporotic Effect of Deer Antler in Ovariectomized Rats

Authors: Hye Kyung Kim, Myung-Gyou Kim, Kang-Hyun Leem

Abstract:

The deer velvet antler is well known for its traditional medicinal value and is widely used in the clinic. It has been considered to possess bone-strengthening activity. The goal of this study was to investigate the anti-osteoporotic effect of deer antler velvet on ovariectomized rats (OVX), and their possible mechanism of the action. In the first step, the in vitro effects of DAE on bone loss were determined. The proliferation, collagen content and alkaline phosphatase (ALP) activity of human osteoblastic MG-63 cells and osteoclastogenesis from bone marrow-derived precursor cells were measured. The in vivo experiment confirmed the positive effect of DAE on bone tissue. 3-month old female Sparague-Dawley rats were either sham operated or OVX, and administered DAE (20 and 100 mg/kg) for 4 weeks. DAE increased MG-63 cell proliferation and ALP activity in a dose-dependent manner. Collagen content was also increased by DAE treatment. However, the effect of DAE on bone resorption was not observed. OVX rats supplemented with DAE showed osteoprotective effects as the bone ALP level was increased and c-terminal telopeptide level was decreased by 100 mg/kg DAE treatment compared with OVX controls. Moreover, the tartrate-resistant acid phosphatase-5b level was also decreased by DAE treatment. The present study suggests that DAE is effective in preventing bone loss in OVX rats, and may be potential therapeutic agents for the treatment of postmenopausal osteoporosis.

Keywords: bone ALP, c-terminal telopeptide, deer antler, osteoporosis, ovariectomy, tartrate-resistant acid phosphatase-5b

Procedia PDF Downloads 231
1505 Development of Peptide Inhibitors against Dengue Virus Infection by in Silico Design

Authors: Aussara Panya, Nunghathai Sawasdee, Mutita Junking, Chatchawan Srisawat, Kiattawee Choowongkomon, Pa-Thai Yenchitsomanus

Abstract:

Dengue virus (DENV) infection is a global public health problem with approximately 100 million infected cases a year. Presently, there is no approved vaccine or effective drug available; therefore, the development of anti-DENV drug is urgently needed. The clinical reports revealing the positive association between the disease severity and viral titer has been reported previously suggesting that the anti-DENV drug therapy can possibly ameliorate the disease severity. Although several anti-DENV agents showed inhibitory activities against DENV infection, to date none of them accomplishes clinical use in the patients. The surface envelope (E) protein of DENV is critical for the viral entry step, which includes attachment and membrane fusion; thus, the blocking of envelope protein is an attractive strategy for anti-DENV drug development. To search the safe anti-DENV agent, this study aimed to search for novel peptide inhibitors to counter DENV infection through the targeting of E protein using a structure-based in silico design. Two selected strategies has been used including to identify the peptide inhibitor which interfere the membrane fusion process whereby the hydrophobic pocket on the E protein was the target, the destabilization of virion structure organization through the disruption of the interaction between the envelope and membrane proteins, respectively. The molecular docking technique has been used in the first strategy to search for the peptide inhibitors that specifically bind to the hydrophobic pocket. The second strategy, the peptide inhibitor has been designed to mimic the ectodomain portion of membrane protein to disrupt the protein-protein interaction. The designed peptides were tested for the effects on cell viability to measure the toxic to peptide to the cells and their inhibitory assay to inhibit the DENV infection in Vero cells. Furthermore, their antiviral effects on viral replication, intracellular protein level and viral production have been observed by using the qPCR, cell-based flavivirus immunodetection and immunofluorescence assay. None of tested peptides showed the significant effect on cell viability. The small peptide inhibitors achieved from molecular docking, Glu-Phe (EF), effectively inhibited DENV infection in cell culture system. Its most potential effect was observed for DENV2 with a half maximal inhibition concentration (IC50) of 96 μM, but it partially inhibited other serotypes. Treatment of EF at 200 µM on infected cells also significantly reduced the viral genome and protein to 83.47% and 84.15%, respectively, corresponding to the reduction of infected cell numbers. An additional approach was carried out by using peptide mimicking membrane (M) protein, namely MLH40. Treatment of MLH40 caused the reduction of foci formation in four individual DENV serotype (DENV1-4) with IC50 of 24-31 μM. Further characterization suggested that the MLH40 specifically blocked viral attachment to host membrane, and treatment with 100 μM could diminish 80% of viral attachment. In summary, targeting the hydrophobic pocket and M-binding site on the E protein by using the peptide inhibitors could inhibit DENV infection. The results provide proof of-concept for the development of antiviral therapeutic peptide inhibitors to counter DENV infection through the use of a structure-based design targeting conserved viral protein.

Keywords: dengue virus, dengue virus infection, drug design, peptide inhibitor

Procedia PDF Downloads 337
1504 Trehalose-Based Nanocarriers for Alleviation of Inflammation in Colitis

Authors: Wessam H. Abd-Elsalam, Mona M. Saber, Samar M. Abouelatta

Abstract:

Non-steroidal anti-inflammatory drugs (NSAIDs) are considered a double edged sword in inflammatory bowel diseases (IBDs). Some studies reported their advantageous effect in decreasing inflammation, and other studies reported that their use is associated with colitis aggravation. This study aimed to use specifically formulated trehalose-based nano-carriers that targets the colon in an attempt to alleviate inflammation caused by NSAIDs. L-α-phosphatidylcholine (PL), trehalose, and transcutol were used to prepare the trehalosomes (THs), which were also loaded with Tenoxicam(TXM) as a model NSAID. To optimize the formulation variables, a full 23 factorial design, using Design-Expert® software, was performed. The optimized formulation composed of trehalose: PL at a weight ratio of 1:1, 377.72 mg transcutol, and sonicated for 4 min, possessed a spherical shape with a size of 268.61 nm and EE% of 97.83% and released 70.22% of its drug content over 24 h. The superior protective action of TXM loaded THs compared to TXM suspension and drug-free THs was shown by the inhibition of the inflammatory biomarkers, namely; IL-1ß, IL-6, and TNF-alpha levels, as well as oxidative stress markers, measured as GSH and MDA. Improved histopathology of the colonic tissue in male New Zealand rabbits also confirmed the superiority of the TXM loaded THs compared to the unformulated drug or the drug free nano-carriers. Our findings highlight the prosperous role of THs in colon targeting and its anti-inflammatory characteristics in guarding against possible NSAIDs-driven exacerbation of colitis.

Keywords: inflammatory bowel disease, trehalose, trehalosomes, colon targeting

Procedia PDF Downloads 123
1503 Evaluation of Human Amnion Hemocompatibility as a Substitute for Vessels

Authors: Ghasem Yazdanpanah, Mona Kakavand, Hassan Niknejad

Abstract:

Objectives: An important issue in tissue engineering (TE) is hemocompatibility. The current engineered vessels are seriously at risk of thrombus formation and stenosis. Amnion (AM) is the innermost layer of fetal membranes that consists of epithelial and mesenchymal sides. It has the advantages of low immunogenicity, anti-inflammatory and anti-bacterial properties as well as good mechanical properties. We recently introduced the amnion as a natural biomaterial for tissue engineering. In this study, we have evaluated hemocompatibility of amnion as potential biomaterial for tissue engineering. Materials and Methods: Amnions were derived from placentas of elective caesarean deliveries which were in the gestational ages 36 to 38 weeks. Extracted amnions were washed by cold PBS to remove blood remnants. Blood samples were obtained from healthy adult volunteers who had not previously taken anti-coagulants. The blood samples were maintained in sterile tubes containing sodium citrate. Plasma or platelet rich plasma (PRP) were collected by blood sample centrifuging at 600 g for 10 min. Hemocompatibility of the AM samples (n=7) were evaluated by measuring of activated partial thromboplastin time (aPTT), prothrombin time (PT), hemolysis, and platelet aggregation tests. P-selectin was also assessed by ELISA. Both epithelial and mesenchymal sides of amnion were evaluated. Glass slide and expanded polytetrafluoroethylene (ePTFE) samples were defined as control. Results: In comparison with glass as control (13.3 ± 0.7 s), prothrombin time was increased significantly while each side of amnion was in contact with plasma (p<0.05). There was no significant difference in PT between epithelial and mesenchymal surfaces (17.4 ± 0.7 s vs. 15.8 ± 0.7 s, respectively). However, aPPT was not significantly changed after incubation of plasma with amnion epithelial and mesenchymal surfaces or glass (28.61 ± 1.39 s, 31.4 ± 2.66 s, glass, 30.76 ± 2.53 s, respectively, p>0.05). Amnion surfaces, ePTFE and glass samples have less hemolysis induction than water considerably (p<0.001), in which no differences were detected. Platelet aggregation measurements showed that platelets were less stimulated by the amnion epithelial and mesenchymal sides, in comparison with ePTFE and glass. In addition, reduction in amount of p-selectin, as platelet activation factor, after incubation of samples with PRP indicated that amnion has less stimulatory effects on platelets than ePTFE and glass. Conclusion: Amnion as a natural biomaterial has the potential to be used in tissue engineering. Our results suggest that amnion has appropriate hemocompatibility to be employed as a vascular substitute.

Keywords: amnion, hemocompatibility, tissue engineering, biomaterial

Procedia PDF Downloads 375
1502 Improvement of Total Phenolic Contents and Anti-oxidative Properties of Ricegrass (Oryza sativa L.) using Selenium Bio-fortification

Authors: Rattanamanee Chomchan, Sunisa Siripongvutikorn, Panupong Puttarak

Abstract:

Ricegrass or young rice sprouts can be introduced as one of functional product since cereal sprouts have been much interested in this era due to their high nutritive values. Bio-fortification of selenium is one strategy to improve plant bioactive compounds. However, the level of selenium used are varied among species of plants, hence, the proper level need to be investigated. In this current study, influence of selenium bio-fortification hydroponically in the form of sodium selenite following the range 0, 10, 20, 30 and 40 mg Se/L on growth characteristics, selenium content, total extractable phenolic content (TPC) accumulation, lipid peroxidation and anti-oxidative properties of ricegrass were investigated. Results revealed that selenium bio-fortified exogenously increased the accumulation of selenium in ricegrass by 5.3 fold at 40 mg Se/L treatment without significant changes in leaves biomass at harvesting day while root part weight were slightly decreased when increased selenium level, respectively. Selenium at low concentration (10 and 20 mg Se/L) can stimulate the production of phenolic compounds and antioxidant activities in young ricegrass as measured by DPPH, ABTS and FRAP assay. Conversely, higher level of selenium fortification reduced the accumulation of phenolics in ricegrass afterward by acting as pro-oxidant. Moreover, highest significant reduction in oxidative stress, measured as malondialdehyde content was also observed at 20 mg Se/L treatment which in correlation to high TPC and antioxidant activities. In conclusion, selenium bio-fortification can be used as a technique to improve precious to ricegrass.

Keywords: antioxidant activities, bio-fortification, ricegrass, selenium

Procedia PDF Downloads 261
1501 Chemical Composition and Antibacterial Activity of the Essential Oils from Bunium alpinum and Bunium incrassatum

Authors: Hayet El Kolli, Hocine Laouer

Abstract:

Bunium in the world comprises about 50 to 100 species, mostly distributed in: Algeria, Italy, Pakistan, Iran, and South Africa. Bunium species have several uses like: Bunium persicum which is commonly used as antispasmodic, carminative, anti-obesity and lactogage. This plant have been widely used as an additive in food stuff such as in bread cooking, rice and yoghurt for its carminative, anti-dyspepsia and antispasmodic effect. The B. paucifolium oil has a wide spectrum of action against moulds, yeast and bacteria. The chemical compositions of Bunium incrassatum and Bunium alpinum essential oils were carry out by GC and GC/MS. Therefore, antibacterial activity of two oils was investigated by disk diffusion method against Pseudomonas aeruginosa ATCC 27853, Escherichia coli ATCC 25922, Salmonella typhimurium ATCC 1331, Staphylococcus aureus ATCC 25923, Klebsiella pneumoniae ATCC 700603, Bacillus cereus ATCC 10876, Enterococcus faecalis ATCC 49452, Lysteria monocytogenes ATCC 15313, Citrobacter freundii ATCC 8090, Proteus mirabilis ATCC 35659. A moderate antibacterial activity was found. In conclusion, it is found that essential oils of the two species are rich in sesquiterpens and other oxygenated compounds. These compounds have been reported to show bactericidal activity and the presence of phenolic compounds makes them useful antioxidants so that results confirm some ethnopharmacologique applications of these two oils of Bunium.

Keywords: Bunium alpinum, Bunium incrassatum, apiaceae, essential oil, sesquiterpens, phenols, antibacterial, antioxidant activities

Procedia PDF Downloads 357
1500 Anti Staphylococcus aureus and Methicillin Resistant Staphylococcus aureus Action of Thermophilic Fungi Acrophialophora levis IBSD19 and Determination of Its Mode of Action Using Electron Microscopy

Authors: Shivankar Agrawal, Indira Sarangthem

Abstract:

Staphylococcus aureus and Methicillin-resistant Staphylococcus aureus (MRSA) remains one of the major causes of healthcare-associated and community-onset infections worldwide. Hence the search for non-toxic natural compounds having antibacterial activity has intensified for future drug development. The exploration of less studied niches of Earth can highly increase the possibility to discover novel bioactive compounds. Therefore, in this study, the cultivable fraction of fungi from the sediments of natural hot springs has been studied to mine potential fungal candidates with antibacterial activity against the human pathogen Staphylococcus aureus and Methicillin-resistant Staphylococcus aureus. We isolated diverse strains of thermophilic fungi from a collection of samples from sediment. Following a standard method, we isolated a promising thermophilic fungus strain IBSD19, identified as Acrophialophora levis, possessing the potential to produce an anti-Staphylococcus aureus agent. The growth conditions were optimized and scaled to fermentation, and its produced extract was subjected to chemical extraction. The ethyl acetate fraction was found to display significant activity against Staphylococcus aureus and MRSA with a minimum inhibitory concentration (MIC) of 0.5 mg/ml and 4 mg/ml, respectively. The cell membrane integrity assay and SEM suggested that the fungal metabolites cause bacteria clustering and further lysis of the cell.

Keywords: antibacterial activity, antioxidant, fungi, Staphylococcus aureus, MRSA, thermophiles

Procedia PDF Downloads 121
1499 Anti-Fibrillation Propensity of a Flavonoid Baicalein against the Fibrils of Hen Egg White Lysozyme: Potential Therapeutics for Lysozyme Amyloidosis

Authors: Naveed Ahmad Fazili

Abstract:

More than 20 human diseases involve the fibrillation of a specific protein/peptide which forms pathological deposits at various sites. Hereditary lysozyme amyloidosis is a systemic disorder which mostly affects liver, spleen and kidney. This conformational disorder is featured by lysozyme fibril formation. In vivo lysozyme fibrillation was simulated under in vitro conditions using a strong denaturant GdHCl at 3M concentration. Sharp decline in the ANS fluorescence intensity compared to the partially unfolded states, almost 20 fold increase in ThT fluorescence intensity, increase in absorbance at 450 nm suggesting turbidity, negative ellipticity peak in the far-UVCD at 217 nm, red shift of 50 nm compared to the native state in congo red assay and appearance of a network of long rope like fibrils in TEM analysis suggested HEWL fibrillation. Anti-fibrillation potency of baicalein against the preformed fibrils of HEWL was investigated following ThT assay in which there was a dose dependent decrease in ThT fluorescence intensity compared to the fibrillar state of HEWL with the maximum effect observed at 150 μM baicalein concentration, loss of negative ellipticity peak in the far-UVCD region, dip in the Rayleigh scattering intensity and absorbance at 350 nm and 450 nm respectively together with a reduction in the density of fibrillar structure in TEM imaging. Thus, it could be suggested that baicalein could prove to be a positive therapeutics for hereditary human lysozyme amyloidosis.

Keywords: amyloid fibrils, baicalein, congo red, negative ellipticity, therapeutics

Procedia PDF Downloads 281