Search results for: epidemic potential disease
14722 Parameter Estimation with Uncertainty and Sensitivity Analysis for the SARS Outbreak in Hong Kong
Authors: Afia Naheed, Manmohan Singh, David Lucy
Abstract:
This work is based on a mathematical as well as statistical study of an SEIJTR deterministic model for the interpretation of transmission of severe acute respiratory syndrome (SARS). Based on the SARS epidemic in 2003, the parameters are estimated using Runge-Kutta (Dormand-Prince pairs) and least squares methods. Possible graphical and numerical techniques are used to validate the estimates. Then effect of the model parameters on the dynamics of the disease is examined using sensitivity and uncertainty analysis. Sensitivity and uncertainty analytical techniques are used in order to analyze the affect of the uncertainty in the obtained parameter estimates and to determine which parameters have the largest impact on controlling the disease dynamics.Keywords: infectious disease, severe acute respiratory syndrome (SARS), parameter estimation, sensitivity analysis, uncertainty analysis, Runge-Kutta methods, Levenberg-Marquardt method
Procedia PDF Downloads 36114721 E-Vet Smart Rapid System: Detection of Farm Disease Based on Expert System as Supporting to Epidemic Disesase Control
Authors: Malik Abdul Jabbar Zen, Wiwik Misaco Yuniarti, Azisya Amalia Karimasari, Novita Priandini
Abstract:
Zoonos is as an infectiontransmitted froma nimals to human sand vice versa currently having increased in the last 20 years. The experts/scientists predict that zoonosis will be a threat to the community in the future since it leads on 70% emerging infectious diseases (EID) and the high mortality of 50%-90%. The zoonosis’ spread from animal to human is caused by contaminated food known as foodborne disease. One World One Health, as the conceptual prevention toward zoonosis, requires the crossed disciplines cooperation to accelerate and streamlinethe handling ofanimal-based disease. E-Vet Smart Rapid System is an integrated innovation in the veterinary expertise application is able to facilitate the prevention, treatment, and educationagainst pandemic diseases and zoonosis. This system is constructed by Decision Support System (DSS) method provides a database of knowledge that is expected to facilitate the identification of disease rapidly, precisely, and accurately as well as to identify the deduction. The testingis conducted through a black box test case and questionnaire (N=30) by validity and reliability approach. Based on the black box test case reveals that E-Vet Rapid System is able to deliver the results in accordance with system design, and questionnaire shows that this system is valid (r > 0.361) and has a reliability (α > 0.3610).Keywords: diagnosis, disease, expert systems, livestock, zoonosis
Procedia PDF Downloads 45514720 CRISPR Technology: A Tool in the Potential Cure for COVID-19 Virus
Authors: Chijindu Okpalaoka, Charles Chinedu Onuselogu
Abstract:
COVID-19, humanity's coronavirus disease caused by SARS-CoV-2, was first detected in late 2019 in Wuhan, China. COVID-19 lacked an established conventional pharmaceutical therapy, and as a result, the outbreak quickly became an epidemic affecting the entire World. Only a qPCR assay is reliable for diagnosing COVID-19. Clustered, regularly interspaced short palindromic repeats (CRISPR) technology is being researched for speedy and specific identification of COVID-19, among other therapeutic techniques. Apart from its therapeutic capabilities, the CRISPR technique is being evaluated to develop antiviral therapies; nevertheless, no CRISPR-based medication has been approved for human use to date. Prophylactic antiviral CRISPR in living being cells, a Cas 13-based approach against coronavirus, has been developed. While this method can be evolved into a treatment approach, it may face substantial obstacles in human clinical trials for licensure. This study discussed the potential applications of CRISPR-based techniques for developing a speedy and accurate feasible treatment alternative for the COVID-19 virus.Keywords: COVID-19, CRISPR technique, Cas13, SARS-CoV-2, prophylactic antiviral
Procedia PDF Downloads 13014719 Peripheral Inflammation and Neurodegeneration; A Potential for Therapeutic Intervention in Alzheimer’s Disease, Parkinson’s Disease, and Amyotrophic Lateral Sclerosis
Authors: Lourdes Hanna, Edward Poluyi, Chibuikem Ikwuegbuenyi, Eghosa Morgan, Grace Imaguezegie
Abstract:
Background: Degeneration of the central nervous system (CNS), also known as neurodegeneration, describes an age-associated progressive loss of the structure and function of neuronal materials, leading to functional and mental impairments. Main body: Neuroinflammation contributes to the continuous worsening of neurodegenerative states which are characterised by functional and mental impairments due to the progressive loss of the structure and function of neu-ronal materials. Some of the most common neurodegenerative diseases include Alzheimer’s disease (AD), Parkinson’s disease (PD) and amyotrophic lateral sclerosis (ALS). Whilst neuroinflammation is a key contributor to the progression of such disease states, it is not the single cause as there are multiple factors which contribute. Theoretically, non-steroidal anti-inflammatory drugs (NSAIDs) have potential to target neuroinflammation to reduce the severity of disease states. Whilst some animal models investigating the effects of NSAIDs on the risk of neurodegenerative diseases have shown a beneficial effect, this is not the same finding. Conclusion: Further investigation using more advanced research methods is required to better understand neuroinflammatory pathways and understand if there is still a potential window for NSAID efficacy.Keywords: intervention, central nervous system, neurodegeneration, neuroinflammation
Procedia PDF Downloads 8214718 A Bayesian Hierarchical Poisson Model with an Underlying Cluster Structure for the Analysis of Measles in Colombia
Authors: Ana Corberan-Vallet, Karen C. Florez, Ingrid C. Marino, Jose D. Bermudez
Abstract:
In 2016, the Region of the Americas was declared free of measles, a viral disease that can cause severe health problems. However, since 2017, measles has reemerged in Venezuela and has subsequently reached neighboring countries. In 2018, twelve American countries reported confirmed cases of measles. Governmental and health authorities in Colombia, a country that shares the longest land boundary with Venezuela, are aware of the need for a strong response to restrict the expanse of the epidemic. In this work, we apply a Bayesian hierarchical Poisson model with an underlying cluster structure to describe disease incidence in Colombia. Concretely, the proposed methodology provides relative risk estimates at the department level and identifies clusters of disease, which facilitates the implementation of targeted public health interventions. Socio-demographic factors, such as the percentage of migrants, gross domestic product, and entry routes, are included in the model to better describe the incidence of disease. Since the model does not impose any spatial correlation at any level of the model hierarchy, it avoids the spatial confounding problem and provides a suitable framework to estimate the fixed-effect coefficients associated with spatially-structured covariates.Keywords: Bayesian analysis, cluster identification, disease mapping, risk estimation
Procedia PDF Downloads 15114717 Diabetes and Medical Plant's Treatment: Ethnobotanical Studies Carried out in Morocco
Authors: Jamila Fakchich, Mostafa Jamila Lazaar Elachouri, Lakhder Fakchich, Fatna Ouali, Abd Errazzak Belkacem
Abstract:
Diabetes is a chronic metabolic disease that has a significant impact on the health, quality of life, and life expectancy of patients as well as the health care system. By its nature diabetes, is a multisystem disease with wide-ranging complication that span nearly all region of the body. This epidemic problem, however, is not unique to the industrialized society, but has also hardly struck the developing countries. In Morocco, as developing country, there is an epidemic rise in diabetes, with ensuing concern about the management and control of this disease; it began a chronic burdensome disease of largely middle-aged and elderly people, with a long course and serious complications often resulting in high death-rate, the treatment of diabetes spent vast amount of resources including medicines, diets, physical training. Treatment of this disease is considered problematic due to the lack of effective and safe drugs capable of inducing sustained clinical, biochemical, and histological cure. In Moroccan society, the phytoremedies are some times the only affordable sources of healthcare, particularly for the people in remote areas. In this paper, we present a synthesis work obtained from the ethnobotanical data reported in different specialized journals. A Synthesis of four published ethnobotanical studies that have been carried out in different region of Morocco by different team seekers during the period from 1997 to 2015. Medicinal plants inventoried by different seekers in four Moroccan’s areas have been regrouped and codified, then, Factorial Analysis (FA) and Principal Components Analysis (PCA) are used to analyse the aggregated data from the four studies and plants are classified according to their frequency of use by population. Our work deals with an attempt to gather information on some traditional uses of medicinal plants from different regions of Morocco, also, it was designed to give a set of medicinal plants commonly used by Moroccan people in the treatment of diabetes; In this paper, we intended to provide a basic knowledge about plant species used by Moroccan society for treatment of diabetes. One of the most interesting aspects of this type of works is to assess the relative cultural importance of medicinal plants for specific illnesses and exploring its usefulness in the context of diabetes.Keywords: Morocco, medicinal plants, ethnobotanical, diabetes, phytoremedies
Procedia PDF Downloads 33214716 Maackiain Attenuates Alpha-Synuclein Accumulation and Improves 6-OHDA-Induced Dopaminergic Neuron Degeneration in Parkinson's Disease Animal Model
Authors: Shao-Hsuan Chien, Ju-Hui Fu
Abstract:
Parkinson’s disease (PD) is a degenerative disorder of the central nervous system that is characterized by progressive loss of dopaminergic neurons in the substantia nigra pars compacta and motor impairment. Aggregation of α-synuclein in neuronal cells plays a key role in this disease. At present, therapeutics for PD provides moderate symptomatic benefit but is not able to delay the development of this disease. Current efforts for the treatment of PD are to identify new drugs that show slow or arrest progressive course of PD by interfering with a disease-specific pathogenetic process in PD patients. Maackiain is a bioactive compound isolated from the roots of the Chinese herb Sophora flavescens. The purpose of the present study was to assess the potential for maackiain to ameliorate PD in Caenorhabditis elegans models. Our data reveal that maackiain prevents α-synuclein accumulation in the transgenic Caenorhabditis elegans model and also improves dopaminergic neuron degeneration, food-sensing behavior, and life-span in 6-hydroxydopamine-induced Caenorhabditis elegans model, thus indicating its potential as a candidate antiparkinsonian drug.Keywords: maackiain, Parkinson’s disease, dopaminergic neurons, α-Synuclein
Procedia PDF Downloads 19914715 Endothelial Progenitor Cell Biology in Ankylosing Spondylitis
Authors: Ashit Syngle, Inderjit Verma, Pawan Krishan
Abstract:
Aim: Endothelial progenitor cells (EPCs) are unique populations which have reparative potential in overcoming the endothelial damage and reducing cardiovascular risk. Patients with ankylosing spondylitis (AS) have increased risk of cardiovascular morbidity and mortality. The aim of this study was to investigate the endothelial progenitor cell population in AS patients and its potential relationships with disease variables. Methods: Endothelial progenitor cells were measured in peripheral blood samples from 20 AS and 20 healthy controls by flow cytometry on the basis of CD34 and CD133 expression. Disease activity was evaluated by using Bath Ankylosing Spondylitis Disease Activity Index (BASDAI). Functional ability was monitored by using Bath Ankylosing Spondylitis Functional Index (BASFI). Results: EPCs were depleted in AS patients as compared to the healthy controls (CD34+/CD133+: 0.027 ± 0.010 % vs. 0.044 ± 0.011 %, p<0.001). EPCs depletion were significantly associated with disease duration (r=-0.52, p=0.01) and BASDAI (r=-0.45, p=0.04). Conclusion: This is the first study to demonstrate endothelial progenitor cells depletion in AS patients. EPCs depletion inversely correlates with disease duration and disease activity, suggesting the pivotal role of inflammation in depletion of EPCs. EPC would possibly also serve as a therapeutic target for preventing cardiovascular disease in AS.Keywords: ankylosing spondylitis, endothelial progenitor cells, inflammation, vascular damage
Procedia PDF Downloads 43814714 Dynamics of a Susceptible-Infected-Recovered Model along with Time Delay, Modulated Incidence, and Nonlinear Treatment
Authors: Abhishek Kumar, Nilam
Abstract:
As we know that, time delay exists almost in every biological phenomenon. Therefore, in the present study, we propose a susceptible–infected–recovered (SIR) epidemic model along with time delay, modulated incidence rate of infection, and Holling Type II nonlinear treatment rate. The present model aims to provide a strategy to control the spread of epidemics. In the mathematical study of the model, it has been shown that the model has two equilibriums which are named as disease-free equilibrium (DFE) and endemic equilibrium (EE). Further, stability analysis of the model is discussed. To prove the stability of the model at DFE, we derived basic reproduction number, denoted by (R₀). With the help of basic reproduction number (R₀), we showed that the model is locally asymptotically stable at DFE when the basic reproduction number (R₀) less than unity and unstable when the basic reproduction number (R₀) is greater than unity. Furthermore, stability analysis of the model at endemic equilibrium has also been discussed. Finally, numerical simulations have been done using MATLAB 2012b to exemplify the theoretical results.Keywords: time delayed SIR epidemic model, modulated incidence rate, Holling type II nonlinear treatment rate, stability
Procedia PDF Downloads 15614713 Trichoderma spp Consortium and Its Efficacy as Biological Control Agent of Ganoderma Disease of Oil Palm (Elaies guineensis Jacquin)
Authors: Habu Musa, Nusaibah Binti Syd Ali
Abstract:
Oil palm industries particularly in Malaysia and Indonesia are being devastated by Ganoderma disease caused by Ganoderma spp. To date, this disease has been causing serious oil palm yield losses and collapse of oil palm trees, thus affecting its contribution to the producer’s economy. Research on sustainable and eco-friendly remedy to counter Ganoderma disease is on the upsurge to avoid the current control measures via synthetic fungicides. Trichoderma species have been the most studied and valued microbes as biological control agents in an effort to combat a wide range of plant diseases sustainably. Therefore, in this current study, the potential of Trichoderma spp. (Trichoderma asperellum, Trichoderma harzianum, and Trichoderma virens) as a consortium approach was evaluated as biological control agents against Ganoderma disease on oil palm. The consortium of Trichoderma spp. applied found to be the most effective treatment in suppressing Ganoderma disease with 83.03% and 89.16% from the foliar and bole symptoms respectively. Besides, it exhibited tremendous enhancement in the oil palm seedling vegetative growth parameters. Also, it had highly induced significant activity of peroxidase, polyphenol oxidase and total phenolic content was recorded in the consortium treatment compared to the control treatment. Disease development was slower in the seedlings treated with consortium of Trichoderma spp. compared to the positive control, which exhibited with the highest percentage of disease severity.Keywords: biological control, ganoderma disease, trichoderma, disease severity
Procedia PDF Downloads 27614712 Formal Models of Sanitary Inspections Teams Activities
Authors: Tadeusz Nowicki, Radosław Pytlak, Robert Waszkowski, Jerzy Bertrandt, Anna Kłos
Abstract:
This paper presents methods for formal modeling of activities in the area of sanitary inspectors outbreak of food-borne diseases. The models allow you to measure the characteristics of the activities of sanitary inspection and as a result allow improving the performance of sanitary services and thus food security.Keywords: food-borne disease, epidemic, sanitary inspection, mathematical models
Procedia PDF Downloads 30214711 Challenges to Tuberculosis Control in Angola: The Narrative of Medical Professionals
Authors: Domingos Vita, Patrick Brady
Abstract:
Background: There is a tuberculosis (TB) epidemic in Angola that has been getting worse for more than a decade despite the active implementation of the DOTS strategy. The aim of this study was to directly interrogate healthcare workers involved in TB control on what they consider to be the drivers of the TB epidemic in Angola. Methods: Twenty four in-depth qualitative interviews were conducted with medical staff working in this field in the provinces of Luanda and Benguela. Results: The healthcare professionals see the migrant working poor as a particular problem for the control of TB. These migrants are constructed as ‘Rural People’ and are seen as non-compliant and late-presenting. This is a stigmatized and marginal group contending with the additional stigma associated with TB infection. The healthcare professionals interviewed also see the interruption of treatment and self medication generally as a better explanation for the TB epidemic than urbanization or lack of medication. Conclusions: The local narrative is in contrast to previous explanations used elsewhere in the developing world. To be effective policy must recognize the local issues of the migrant workforce, interruption of treatment and the stigma associated with TB in Angola.Keywords: Africa, Angola, migrants, qualitative, research, tuberculosis
Procedia PDF Downloads 16114710 Epidemiological Analysis of Measles Outbreak in North-Kazakhstan Region of the Republic of Kazakhstan
Authors: Fatima Meirkhankyzy Shaizadina, Alua Oralovna Omarova, Praskovya Mikhailovna Britskaya, Nessipkul Oryntayevna Alysheva
Abstract:
In recent years in the Republic of Kazakhstan there have been registered outbreaks of measles among the population. The objective of work was the analysis of outbreak of measles in 2014 among the population of North-Kazakhstan region of the Republic of Kazakhstan. For the analysis of the measles outbreak descriptive and analytical research, techniques were used and threshold levels of morbidity were calculated. The increase of incidence was noted from March to July. The peak was registered in May and made 9.0 per 100000 population. High rates were registered in April – 5.7 per 100000 population, and in June and July they made 5.7 and 3.1 respectively. Duration of the period of increase made 5 months. The analysis of monthly incidence of measles revealed spring and summer seasonality. Across the territory it was established that 69.2% of cases were registered in the city, 29.1% in rural areas and 1.7% of cases were brought in from other regions of Kazakhstan. The registered cases and threshold values of measles during the outbreak revealed that from 12 to 24 week, and also during the 40th week the cases exceeding the threshold levels are registered. Thus, for example, for the analyzed 1 week the number of the revealed patients made 4, which exceeds the calculated threshold value (3) by 33.3%. The data exceeding the threshold values confirm the emergence of a disease outbreak or the beginning of epidemic rise in morbidity. Epidemic rise in incidence of the population of North-Kazakhstan region was observed throughout 2014. The risk group includes 0-4 year-old children, who made 22.7%, 15-19 year-olds – 25.6%, 20-24 year-olds – 20.9%. The analysis of measles cases registration by gender revealed that women are registered 1.1 times more often than men. The ratio of women to men made 1:0.87. In social and professional groups often ill are unorganized children – 23.3% and students – 19.8%. Studying clinical manifestations of measles in the hospitalized patients, the typical beginning of a disease with expressed intoxication symptoms – weakness, sickliness was established. In individual cases expressed intoxication symptoms, hemorrhagic and dyspeptic syndromes, complications in the form of overlay of a secondary bacterial infection, which defined high severity of the illness, were registered both in adults and in children. The average duration of stay of patients in the hospital made 6.9 days. The average duration of time between date of getting the disease and date of delivery of health care made 3.6 days. Thus, the analysis of monthly incidence of measles revealed spring and summer seasonality, the peak of which was registered in May. Urban dwellers are ill more often (69.2%), while in rural areas people are ill more rarely (29.1%). Throughout 2014 an epidemic rise in incidence of the population of North-Kazakhstan region was observed. Risk group includes: children under 4 – 22.7%, 15-19 year-olds – 25.6%, 20-24 year-olds – 20.9%. The ratio of women and men made 1:0.87. The typical beginning of a disease in all hospitalized with the expressed intoxication symptoms – weakness, sickliness was established.Keywords: epidemiological analysis, measles, morbidity, outbreak
Procedia PDF Downloads 22314709 The Impact of Living at Home during the COVID-19 on Young Children’s Disruptive Behaviours
Authors: Zhou Yuwei
Abstract:
This study used the multidimensional rating scale for disruptive behaviour in preschool children (parent version) to assess changes in the disruptive behaviour (tantrums, disobedience, aggression, and low level of concern for others) of 200 young children in Nanjing, Jiangsu Province, China, before and after living at home during the new crown epidemic, and five additional teachers of young children were selected to conduct interviews on the performance and changes in their disruptive behaviour at school. The following conclusions were drawn from the questionnaires and interviews: (1) 49% of the children showed a decrease in disruptive behaviour compared to the pre-epidemic period; (2) boys were more disruptive than girls due to individual factors; (3) children with a decrease in disruptive behaviour were more likely to have democratic and authoritative parenting styles due to parental education and upbringing; and the higher the level of parental education, the greater the decrease in disruptive behaviour. (4) For parents who worked outside the home during the epidemic and who did not work, disruptive behaviour scores were higher for their children. Meanwhile, disruptive behaviour was more pronounced the longer the child used electronic devices. The longer the parent-child interaction, the less disruptive behaviour was evident.Keywords: disruptive behaviour, home life, children, COVID-19
Procedia PDF Downloads 10314708 Cardiovascular Disease Prediction Using Machine Learning Approaches
Abstract:
It is estimated that heart disease accounts for one in ten deaths worldwide. United States deaths due to heart disease are among the leading causes of death according to the World Health Organization. Cardiovascular diseases (CVDs) account for one in four U.S. deaths, according to the Centers for Disease Control and Prevention (CDC). According to statistics, women are more likely than men to die from heart disease as a result of strokes. A 50% increase in men's mortality was reported by the World Health Organization in 2009. The consequences of cardiovascular disease are severe. The causes of heart disease include diabetes, high blood pressure, high cholesterol, abnormal pulse rates, etc. Machine learning (ML) can be used to make predictions and decisions in the healthcare industry. Thus, scientists have turned to modern technologies like Machine Learning and Data Mining to predict diseases. The disease prediction is based on four algorithms. Compared to other boosts, the Ada boost is much more accurate.Keywords: heart disease, cardiovascular disease, coronary artery disease, feature selection, random forest, AdaBoost, SVM, decision tree
Procedia PDF Downloads 15314707 Development of Time Series Forecasting Model for Dengue Cases in Nakhon Si Thammarat, Southern Thailand
Authors: Manit Pollar
Abstract:
Identifying the dengue epidemic periods early would be helpful to take necessary actions to prevent the dengue outbreaks. Providing an accurate prediction on dengue epidemic seasons will allow sufficient time to take the necessary decisions and actions to safeguard the situation for local authorities. This study aimed to develop a forecasting model on number of dengue incidences in Nakhon Si Thammarat Province, Southern Thailand using time series analysis. We develop Seasonal Autoregressive Moving Average (SARIMA) models on the monthly data collected between 2003-2011 and validated the models using data collected between January-September 2012. The result of this study revealed that the SARIMA(1,1,0)(1,2,1)12 model closely described the trends and seasons of dengue incidence and confirmed the existence of dengue fever cases in Nakhon Si Thammarat for the years between 2003-2011. The study showed that the one-step approach for predicting dengue incidences provided significantly more accurate predictions than the twelve-step approach. The model, even if based purely on statistical data analysis, can provide a useful basis for allocation of resources for disease prevention.Keywords: SARIMA, time series model, dengue cases, Thailand
Procedia PDF Downloads 35814706 Climate Change and Dengue Transmission in Lahore, Pakistan
Authors: Sadia Imran, Zenab Naseem
Abstract:
Dengue fever is one of the most alarming mosquito-borne viral diseases. Dengue virus has been distributed over the years exponentially throughout the world be it tropical or sub-tropical regions of the world, particularly in the last ten years. Changing topography, climate change in terms of erratic seasonal trends, rainfall, untimely monsoon early or late and longer or shorter incidences of either summer or winter. Globalization, frequent travel throughout the world and viral evolution has lead to more severe forms of Dengue. Global incidence of dengue infections per year have ranged between 50 million and 200 million; however, recent estimates using cartographic approaches suggest this number is closer to almost 400 million. In recent years, Pakistan experienced a deadly outbreak of the disease. The reason could be that they have the maximum exposure outdoors. Public organizations have observed that changing climate, especially lower average summer temperature, and increased vegetation have created tropical-like conditions in the city, which are suitable for Dengue virus growth. We will conduct a time-series analysis to study the interrelationship between dengue incidence and diurnal ranges of temperature and humidity in Pakistan, Lahore being the main focus of our study. We have used annual data from 2005 to 2015. We have investigated the relationship between climatic variables and dengue incidence. We used time series analysis to describe temporal trends. The result shows rising trends of Dengue over the past 10 years along with the rise in temperature & rainfall in Lahore. Hence this seconds the popular statement that the world is suffering due to Climate change and Global warming at different levels. Disease outbreak is one of the most alarming indications of mankind heading towards destruction and we need to think of mitigating measures to control epidemic from spreading and enveloping the cities, countries and regions.Keywords: Dengue, epidemic, globalization, climate change
Procedia PDF Downloads 23314705 Maternal-Fetal Outcome in Pregnant Women with Ebola Virus Disease: A Systematic Review
Authors: Garba Iliyasu, Lamaran Dattijo
Abstract:
Introduction: Ebola virus disease (EVD) is a disease of humans and other primates caused by Ebola viruses. The most widespread epidemic of EVD in history occurred recently in several West African countries. The burden and outcome of EVD in pregnant women remains uncertain. There are very few studies to date reporting on maternal and fetal outcomes among pregnant women with EVD, hence the justification for this comprehensive review of these published studies. Methods: Published studies in English that reported on maternal and or fetal outcome among pregnant women with EVD up to May 2016 were searched in electronic databases (Google Scholar, Medline, Embase, PubMed, AJOL, and Scopus). Studies that did not satisfy the inclusion criteria were excluded. We extracted the following variables from each study: geographical location, year of the study, settings of the study, participants, maternal and fetal outcome.Result: There were 12 studies that reported on 108 pregnant women and 110 fetal outcomes. Six of the studies were case reports, 3 retrospective studies, 2 cross-sectional studies and 1 was a technical report. There were 91(84.3%) deaths out of the 108 pregnant women, while only 1(0.9%) fetal survival was reported out of 110. Survival rate among the 15 patients that had spontaneous abortion/stillbirth or induced delivery was 100%. Conclusion: There was a poor maternal and fetal outcome among pregnant women with EVD, and fetal evacuation significantly improves maternal survival.Keywords: Africa, ebola, maternofetal, outcome
Procedia PDF Downloads 26414704 Alzheimer’s Disease Measured in Work Organizations
Authors: Katherine Denise Queri
Abstract:
The effects of sick workers have an impact in administration of labor. This study aims to provide knowledge on the disease that is Alzheimer’s while presenting an answer to the research question of when and how is the disease considered as a disaster inside the workplace. The study has the following as its research objectives: 1. Define Alzheimer’s disease, 2. Evaluate the effects and consequences of an employee suffering from Alzheimer’s disease, 3. Determine the concept of organizational effectiveness in the area of Human Resources, and 4. Identify common figures associated with Alzheimer’s disease. The researcher gathered important data from books, video presentations, and interviews of workers suffering from Alzheimer’s disease and from the internet. After using all the relevant data collection instruments mentioned, the following data emerged: 1. Alzheimer’s disease has certain consequences inside the workplace, 2. The occurrence of Alzheimer’s Disease in an employee’s life greatly affects the company where the worker is employed, and 3. The concept of workplace efficiency suggests that an employer must prepare for such disasters that Alzheimer’s disease may bring to the company where one is employed. Alzheimer’s disease can present disaster in any workplace.Keywords: administration, Alzheimer's disease, conflict, disaster, employment
Procedia PDF Downloads 44514703 Transition of Nutrition Style and Obesity: A Kuwaiti Case Study
Authors: Othman Saleh Al-Razgan
Abstract:
Obesity establishes an epidemic along with an array of comorbidities and this call for careful clinical assessment, to identify causal factors and comprehensive management. In Kuwait, this epidemic reflects the progressive, socio-economic and age-related issues, along with the shift of nutrition from traditional to modern-style. The current research attempts to narrate the obesity and related health issues in Kuwait, with a special emphasis on the magnitude of the issue in Kuwait, nutrition transition over the past three decades, change in life-style, and possible solution for this issue.Keywords: clinical assessment, comorbidities, obesity, socio-economic
Procedia PDF Downloads 44214702 A Review of Evidence on the Use of Digital Healthcare Interventions to Provide Follow-Up Care for Coeliac Disease Patients
Abstract:
Background: Coeliac Disease affects around 1 in 100 people. Untreated, it can result in serious morbidity such as malabsorption and cancers. The only treatment is to adhere to a gluten free diet (GFD). International guidelines recommend that people with the coeliac disease receive follow-up healthcare annually to detect complications early and support their adherence to a GFD. However, there is a finite amount of healthcare in the UK, and as such, not all patients receive follow-up care as recommended by the guidelines. Furthermore, there is an increasing number of patients being diagnosed with coeliac disease. Given the potential severe morbidity that non-adherence to a GFD could result in, alongside reports that the rate of non- GFD adherence could be as high as 91%, it is imperative that action is taken. One potential solution to this would be to provide follow-up care digitally through utilising technology. This abstract reports on a rapid review undertaken to explore the existing evidence in this area. Methods: In June 2020, 11 bibliographic databases were searched to find any pertinent studies. The inclusion criteria required the study to be written in the English language and report on the use of digital healthcare interventions for people with Coeliac Disease. Results: A small amount of evidence (n=8) was found which met our inclusion criteria and pertained to the provision of CD follow-up digitally. These studies focussed either on educating and supporting patients to adhere to a GFD or providing consultation remotely with a focus on detecting complications early. These studies showed that there is potential for digital healthcare interventions to positively impact people with coeliac disease. However, it is suggested that the effectiveness of these interventions may depend on local circumstances, individual knowledge of CD and general attitudes. Conclusion: The above studies suggest that providing follow-up care digitally may offer a potential solution; however, the evidence about how this should be done and in what circumstances this will work for individuals is scarce. In the light of the COVID-19 pandemic, the introduction of digital healthcare interventions appears to be highly topical, and as such, this review may benefit from being refreshed in the future.Keywords: coeliac disease, follow-up, gluten free diet, digital healthcare interventions
Procedia PDF Downloads 17514701 Network Pharmacological Evaluation of Holy Basil Bioactive Phytochemicals for Identifying Novel Potential Inhibitors Against Neurodegenerative Disorder
Authors: Bhuvanesh Baniya
Abstract:
Alzheimer disease is illnesses that are responsible for neuronal cell death and resulting in lifelong cognitive problems. Due to their unclear mechanism, there are no effective drugs available for the treatment. For a long time, herbal drugs have been used as a role model in the field of the drug discovery process. Holy basil in the Indian medicinal system (Ayurveda) is used for several neuronal disorders like insomnia and memory loss for decades. This study aims to identify active components of holy basil as potential inhibitors for the treatment of Alzheimer disease. To fulfill this objective, the Network pharmacology approach, gene ontology, pharmacokinetics analysis, molecular docking, and molecular dynamics simulation (MDS) studies were performed. A total of 7 active components in holy basil, 12 predicted neurodegenerative targets of holy basil, and 8063 Alzheimer-related targets were identified from different databases. The network analysis showed that the top ten targets APP, EGFR, MAPK1, ESR1, HSPA4, PRKCD, MAPK3, ABL1, JUN, and GSK3B were found as significant target related to Alzheimer disease. On the basis of gene ontology and topology analysis results, APP was found as a significant target related to Alzheimer’s disease pathways. Further, the molecular docking results to found that various compounds showed the best binding affinities. Further, MDS top results suggested could be used as potential inhibitors against APP protein and could be useful for the treatment of Alzheimer’s disease.Keywords: holy basil, network pharmacology, neurodegeneration, active phytochemicals, molecular docking and simulation
Procedia PDF Downloads 10114700 Modelling Dengue Disease With Climate Variables Using Geospatial Data For Mekong River Delta Region of Vietnam
Authors: Thi Thanh Nga Pham, Damien Philippon, Alexis Drogoul, Thi Thu Thuy Nguyen, Tien Cong Nguyen
Abstract:
Mekong River Delta region of Vietnam is recognized as one of the most vulnerable to climate change due to flooding and seawater rise and therefore an increased burden of climate change-related diseases. Changes in temperature and precipitation are likely to alter the incidence and distribution of vector-borne diseases such as dengue fever. In this region, the peak of the dengue epidemic period is around July to September during the rainy season. It is believed that climate is an important factor for dengue transmission. This study aims to enhance the capacity of dengue prediction by the relationship of dengue incidences with climate and environmental variables for Mekong River Delta of Vietnam during 2005-2015. Mathematical models for vector-host infectious disease, including larva, mosquito, and human being were used to calculate the impacts of climate to the dengue transmission with incorporating geospatial data for model input. Monthly dengue incidence data were collected at provincial level. Precipitation data were extracted from satellite observations of GSMaP (Global Satellite Mapping of Precipitation), land surface temperature and land cover data were from MODIS. The value of seasonal reproduction number was estimated to evaluate the potential, severity and persistence of dengue infection, while the final infected number was derived to check the outbreak of dengue. The result shows that the dengue infection depends on the seasonal variation of climate variables with the peak during the rainy season and predicted dengue incidence follows well with this dynamic for the whole studied region. However, the highest outbreak of 2007 dengue was not captured by the model reflecting nonlinear dependences of transmission on climate. Other possible effects will be discussed to address the limitation of the model. This suggested the need of considering of both climate variables and another variability across temporal and spatial scales.Keywords: infectious disease, dengue, geospatial data, climate
Procedia PDF Downloads 38314699 Prediction of Covid-19 Cases and Current Situation of Italy and Its Different Regions Using Machine Learning Algorithm
Authors: Shafait Hussain Ali
Abstract:
Since its outbreak in China, the Covid_19 19 disease has been caused by the corona virus SARS N coyote 2. Italy was the first Western country to be severely affected, and the first country to take drastic measures to control the disease. In start of December 2019, the sudden outbreaks of the Coronary Virus Disease was caused by a new Corona 2 virus (SARS-CO2) of acute respiratory syndrome in china city Wuhan. The World Health Organization declared the epidemic a public health emergency of international concern on January 30, 2020,. On February 14, 2020, 49,053 laboratory-confirmed deaths and 1481 deaths have been reported worldwide. The threat of the disease has forced most of the governments to implement various control measures. Therefore it becomes necessary to analyze the Italian data very carefully, in particular to investigates and to find out the present condition and the number of infected persons in the form of positive cases, death, hospitalized or some other features of infected persons will clear in simple form. So used such a model that will clearly shows the real facts and figures and also understandable to every readable person which can get some real benefit after reading it. The model used must includes(total positive cases, current positive cases, hospitalized patients, death, recovered peoples frequency rates ) all features that explains and clear the wide range facts in very simple form and helpful to administration of that country.Keywords: machine learning tools and techniques, rapid miner tool, Naive-Bayes algorithm, predictions
Procedia PDF Downloads 10714698 A Study on the Effects of Urban Density, Sociodemographic Vulnerability, and Medical Service on the Impact of COVID-19
Authors: Jang-hyun Oh, Kyoung-ho Choi, Jea-sun Lee
Abstract:
The outbreak of the COVID-19 pandemic brought reconsiderations and doubts about urban density as compact cities became epidemic hot spots. Density, though, provides an upside in that medical services required to protect citizens against the spread of disease are concentrated within compact cities, which helps reduce the mortality rate. Sociodemographic characteristics are also a crucial factor in determining the vulnerability of the population, and the purpose of this study is to empirically discover how these three urban factors affect the severity of the epidemic impacts. The study aimed to investigate the influential relationships between urban factors and epidemic impacts and provide answers to whether superb medical service in compact cities can scale down the impacts of COVID-19. SEM (Structural Equation Modeling) was applied as a suitable research method for verifying interrelationships between factors based on theoretical grounds. The study accounted for 144 municipalities in South Korea during periods from the first emergence of COVID-19 to December 31st, 2022. The study collected data related to infection and mortality cases from each municipality, and it holds significance as primary research that enlightens the aspects of epidemic impact concerning urban settings and investigates for the first time the mediated effects of medical service. The result of the evaluation shows that compact cities are most likely to have lower sociodemographic vulnerability and better quality of medical service, while cities with low density contain a higher portion of vulnerable populations and poorer medical services. However, the quality of medical service had no significant influence in reducing neither the infection rate nor the mortality rate. Instead, density acted as the major influencing factor in the infection rate, while sociodemographic vulnerability was the major determinant of the mortality rate. Thus, the findings strongly paraphrase that compact cities, although with high infection rates, tend to have lower mortality rates due to less vulnerability in sociodemographics, Whereas death was more frequent in less dense cities due to higher portions of vulnerable populations such as the elderly and low-income classes. Findings suggest an important lesson for post-pandemic urban planning-intrinsic characteristics of urban settings, such as density and population, must be taken into account to effectively counteract future epidemics and minimize the severity of their impacts. Moreover, the study is expected to contribute as a primary reference material for follow-up studies that further investigate related subjects, including urban medical services during the pandemic.Keywords: urban planning, sociodemographic vulnerability, medical service, COVID-19, pandemic
Procedia PDF Downloads 6014697 Effect of Povidone Iodine in Treatment of Epidemic Keratoconjunctivitis: Clinical Trail Study
Authors: Mohammad Hossain Validad
Abstract:
Background and Aim: Epidemic keratoconjunctivitis is a type of conjunctivitis caused by adenoviruses that can spread rapidly through direct and indirect contact. The aim of this study was to evaluate the therapeutic effects of Povidone-Iodine 0.4% and 0.2% in improving the symptoms and signs of patients with epidemic keratoconjunctivitis. Materials and Methods: In this clinical trial study, 60 patients with a mean age of 27.8±8.4 years who were eligible for inclusion criteria were randomly divided into three groups. The first group received eye drops of Povidone-Iodine 0.4% and betamethasone 0.1%, the second group received PovidoneIodine 0.2% and betamethasone 0.1% and the third group received betamethasone 0.1%. Follow-ups were on the first, fourth, seventh and tenth days after starting treatment. Parameters examined at each examination were hyperaemia, mucopurulent discharge, eyelid edema, hemorrhage, and subepithelial infiltration. Results: The results showed that mucopurulent discharge on the fourth day of the examination (P = 0.005) and the seventh day of the examination (P = 0.001) were significantly different in the three treatment groups. Sub-epithelial infiltration on the tenth day after treatment did not show a significant difference in the 3 groups (P = 0.287). Conclusion: Based on the results of this study, Povidone-Iodine is more effective in relieving some of signs of EKC, such as reduced mucopurulent discharge than steroids alone.Keywords: EKC, topical bethadine, adenovirus, sub epithelial opacity
Procedia PDF Downloads 7614696 Testing and Validation Stochastic Models in Epidemiology
Authors: Snigdha Sahai, Devaki Chikkavenkatappa Yellappa
Abstract:
This study outlines approaches for testing and validating stochastic models used in epidemiology, focusing on the integration and functional testing of simulation code. It details methods for combining simple functions into comprehensive simulations, distinguishing between deterministic and stochastic components, and applying tests to ensure robustness. Techniques include isolating stochastic elements, utilizing large sample sizes for validation, and handling special cases. Practical examples are provided using R code to demonstrate integration testing, handling of incorrect inputs, and special cases. The study emphasizes the importance of both functional and defensive programming to enhance code reliability and user-friendliness.Keywords: computational epidemiology, epidemiology, public health, infectious disease modeling, statistical analysis, health data analysis, disease transmission dynamics, predictive modeling in health, population health modeling, quantitative public health, random sampling simulations, randomized numerical analysis, simulation-based analysis, variance-based simulations, algorithmic disease simulation, computational public health strategies, epidemiological surveillance, disease pattern analysis, epidemic risk assessment, population-based health strategies, preventive healthcare models, infection dynamics in populations, contagion spread prediction models, survival analysis techniques, epidemiological data mining, host-pathogen interaction models, risk assessment algorithms for disease spread, decision-support systems in epidemiology, macro-level health impact simulations, socioeconomic determinants in disease spread, data-driven decision making in public health, quantitative impact assessment of health policies, biostatistical methods in population health, probability-driven health outcome predictions
Procedia PDF Downloads 614695 The First Import of Yellow Fever Cases in China and Its Revealing Suggestions for the Control and Prevention of Imported Emerging Diseases
Authors: Chao Li, Lei Zhou, Ruiqi Ren, Dan Li, Yali Wang, Daxin Ni, Zijian Feng, Qun Li
Abstract:
Background: In 2016, yellow fever had been first ever discovered in China, soon after the yellow fever epidemic occurred in Angola. After the discovery, China had promptly made the national protocol of control and prevention and strengthened the surveillance on passenger and vector. In this study, a descriptive analysis was conducted to summarize China’s experiences of response towards this import epidemic, in the hope of providing experiences on prevention and control of yellow fever and other similar imported infectious diseases in the future. Methods: The imported cases were discovered and reported by General Administration of Quality Supervision, Inspection and Quarantine (AQSIQ) and several hospitals. Each clinically diagnosed yellow fever case was confirmed by real-time reverse transcriptase polymerase chain reaction (RT–PCR). The data of the imported yellow fever cases were collected by local Centers for Disease Control and Prevention (CDC) through field investigations soon after they received the reports. Results: A total of 11 imported cases from Angola were reported in China, during Angola’s yellow fever outbreak. Six cases were discovered by the AQSIQ, among which two with mild symptom were initiative declarations at the time of entry. Except for one death, the remaining 10 cases all had recovered after timely and proper treatment. All cases are Chinese, and lived in Luanda, the capital of Angola. 73% were retailers (8/11) from Fuqing city in Fujian province, and the other three were labors send by companies. 10 cases had experiences of medical treatment in Luanda after onset, among which 8 cases visited the same local Chinese medicine hospital (China Railway four Bureau Hospital). Among the 11 cases, only one case had an effective vaccination. The result of emergency surveillance for mosquito density showed that only 14 containers of water were found positive around places of three cases, and the Breteau Index is 15. Conclusions: Effective response was taken to control and prevent the outbreak of yellow fever in China after discovering the imported cases. However, though the similar origin of Chinese in Angola has provided an easy access for disease detection, information sharing, health education and vaccination on yellow fever; these conveniences were overlooked during previous disease prevention methods. Besides, only one case having effective vaccination revealed the inadequate capacity of immunization service in China. These findings will provide suggestions to improve China’s capacity to deal with not only yellow fever but also other similar imported diseases in China.Keywords: yellow fever, first import, China, suggestion
Procedia PDF Downloads 18714694 Identification of Significant Genes in Rheumatoid Arthritis, Melanoma Metastasis, Ulcerative Colitis and Crohn’s Disease
Authors: Krishna Pal Singh, Shailendra Kumar Gupta, Olaf Wolkenhauer
Abstract:
Background: Our study aimed to identify common genes and potential targets across the four diseases, which include rheumatoid arthritis, melanoma metastasis, ulcerative colitis, and Crohn’s disease. We used a network and systems biology approach to identify the hub gene, which can act as a potential target for all four disease conditions. The regulatory network was extracted from the PPI using the MCODE module present in Cytoscape. Our objective was to investigate the significance of hub genes in these diseases using gene ontology and KEGG pathway enrichment analysis. Methods: Our methodology involved collecting disease gene-related information from DisGeNET databases and performing protein-protein interaction (PPI) network and core genes screening. We then conducted gene ontology and KEGG pathway enrichment analysis. Results: We found that IL6 plays a critical role in all disease conditions and in different pathways that can be associated with the development of all four diseases. Conclusions: The theoretical importance of our research is that we employed various systems and structural biology techniques to identify a crucial protein that could serve as a promising target for treating multiple diseases. Our data collection and analysis procedures involved rigorous scrutiny, ensuring high-quality results. Our conclusion is that IL6 plays a significant role in all four diseases, and it can act as a potential target for treating them. Our findings may have important implications for the development of novel therapeutic interventions for these diseases.Keywords: melanoma metastasis, rheumatoid arthritis, inflammatory bowel diseases, integrated bioinformatics analysis
Procedia PDF Downloads 9014693 Prevalent Features of Human Infections with Highly Pathogenic Avian Influenza A(H7N9) Virus, China, 2017
Authors: Lei Zhou, Dan Li, Ruiqi Ren, Chao Li, Yali Wang, Daxin Ni, Zijian Feng, Timothy M. Uyeki, Qun Li
Abstract:
Since the first human infections with avian influenza A(H7N9) virus were identified in early 2013, 1533 cases of laboratory-confirmed A(H7N9) virus infections were reported and confirmed as of September 13, 2017. The fifth epidemic was defined as starting from September 1, 2016, and the number of A(H7N9) cases has surged since the end of December in 2016. On February 18, 2017, the A(H7N9) cases who were infected with highly pathogenic avian influenza (HPAI) virus was reported from Southern China. The HPAI A(H7N9) cases were identified and then an investigation and analyses were conducted to assess whether disease severity in humans has changed with HPAI A(H7N9) compared with low pathogenic avian influenza (LPAI) A(H7N9) virus infection. Methods: All confirmed cases with A(H7N9) virus infections reported throughout mainland China from September 1, 2016, to September 13, 2017, were included. Cases' information was extracted from field investigation reports and the notifiable infectious surveillance system to describe the demographic, clinical, and epidemiologic characteristics. Descriptive statistics were used to compare HPAI A(H7N9) cases with all LPAI A(H7N9) cases reported during the fifth epidemic. Results: A total of 27 cases of HPAI A(H7N9) virus were identified infection from five provinces, including Guangxi (44%), Guangdong (33%), Hunan (15%), Hebei (4%) and Shangxi (4%). The median age of cases of HPAI A(H7N9) virus infection was 60 years (range, 15 to 80) and most of them were male (59%) and lived in rural areas (78%). All 27 cases had live poultry related exposures within 10 days before their illness onset. In comparison with LPAI A(H7N9) case-patients, HPAI A(H7N9) case-patients were significantly more likely to live in rural areas (78% vs. 51%; p = 0.006), have exposure to the sick or dead poultry (56% vs. 19%; p = 0.000), and be hospitalized earlier (median 3 vs. 4 days; p = 0.007). No significant differences were observed in median age, sex, prevalence of underlying chronic medical conditions, median time from illness onset to first medical service seeking, starting antiviral treatment, and diagnosis. Although the median time from illness onset to death (9 vs. 13 days) was shorter and the overall case-fatality proportion (48% vs. 38%) was higher for HPAI A(H7N9) case-patients than for LPAI A(H7N9) case-patients, these differences were not statistically significant. Conclusions: Our findings indicate that HPAI A(H7N9) virus infection was associated with exposure to sick and dead poultry in rural areas when visited live poultry market or in the backyard. In the fifth epidemic in mainland China, HPAI A (H7N9) case-patients were hospitalized earlier than LPAI A(H7N9) case-patients. Although the difference was not statistically significant, the mortality of HPAI A (H7N9) case-patients was obviously higher than that of LPAI A(H7N9) case-patients, indicating a potential severity change of HPAI A(H7N9) virus infection.Keywords: Avian influenza A (H7N9) virus, highly pathogenic avian influenza (HPAI), case-patients, poultry
Procedia PDF Downloads 166