Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 21653

Search results for: statistical analysis

21653 The Strengths and Limitations of the Statistical Modeling of Complex Social Phenomenon: Focusing on SEM, Path Analysis, or Multiple Regression Models

Authors: Jihye Jeon

Abstract:

This paper analyzes the conceptual framework of three statistical methods, multiple regression, path analysis, and structural equation models. When establishing research model of the statistical modeling of complex social phenomenon, it is important to know the strengths and limitations of three statistical models. This study explored the character, strength, and limitation of each modeling and suggested some strategies for accurate explaining or predicting the causal relationships among variables. Especially, on the studying of depression or mental health, the common mistakes of research modeling were discussed.

Keywords: multiple regression, path analysis, structural equation models, statistical modeling, social and psychological phenomenon

Procedia PDF Downloads 403
21652 The Development of Statistical Analysis in Agriculture Experimental Design Using R

Authors: Somruay Apichatibutarapong, Chookiat Pudprommart

Abstract:

The purpose of this study was to develop of statistical analysis by using R programming via internet applied for agriculture experimental design. Data were collected from 65 items in completely randomized design, randomized block design, Latin square design, split plot design, factorial design and nested design. The quantitative approach was used to investigate the quality of learning media on statistical analysis by using R programming via Internet by six experts and the opinions of 100 students who interested in experimental design and applied statistics. It was revealed that the experts’ opinions were good in all contents except a usage of web board and the students’ opinions were good in overall and all items.

Keywords: experimental design, r programming, applied statistics, statistical analysis

Procedia PDF Downloads 219
21651 Predicting Automotive Interior Noise Including Wind Noise by Statistical Energy Analysis

Authors: Yoshio Kurosawa

Abstract:

The applications of soundproof materials for reduction of high frequency automobile interior noise have been researched. This paper presents a sound pressure prediction technique including wind noise by Hybrid Statistical Energy Analysis (HSEA) in order to reduce weight of acoustic insulations. HSEA uses both analytical SEA and experimental SEA. As a result of chassis dynamo test and road test, the validity of SEA modeling was shown, and utility of the method was confirmed.

Keywords: vibration, noise, road noise, statistical energy analysis

Procedia PDF Downloads 244
21650 Modeling and Statistical Analysis of a Soap Production Mix in Bejoy Manufacturing Industry, Anambra State, Nigeria

Authors: Okolie Chukwulozie Paul, Iwenofu Chinwe Onyedika, Sinebe Jude Ebieladoh, M. C. Nwosu

Abstract:

The research work is based on the statistical analysis of the processing data. The essence is to analyze the data statistically and to generate a design model for the production mix of soap manufacturing products in Bejoy manufacturing company Nkpologwu, Aguata Local Government Area, Anambra state, Nigeria. The statistical analysis shows the statistical analysis and the correlation of the data. T test, Partial correlation and bi-variate correlation were used to understand what the data portrays. The design model developed was used to model the data production yield and the correlation of the variables show that the R2 is 98.7%. However, the results confirm that the data is fit for further analysis and modeling. This was proved by the correlation and the R-squared.

Keywords: General Linear Model, correlation, variables, pearson, significance, T-test, soap, production mix and statistic

Procedia PDF Downloads 243
21649 A Cross-Gender Statistical Analysis of Tuvinian Intonation Features in Comparison With Uzbek and Azerbaijani

Authors: Daria Beziakina, Elena Bulgakova

Abstract:

The paper deals with cross-gender and cross-linguistic comparison of pitch characteristics for Tuvinian with two other Turkic languages - Uzbek and Azerbaijani, based on the results of statistical analysis of pitch parameter values and intonation patterns used by male and female speakers. The main goal of our work is to obtain the ranges of pitch parameter values typical for Tuvinian speakers for the purpose of automatic language identification. We also propose a cross-gender analysis of declarative intonation in the poorly studied Tuvinian language. The ranges of pitch parameter values were obtained by means of specially developed software that deals with the distribution of pitch values and allows us to obtain statistical language-specific pitch intervals.

Keywords: speech analysis, statistical analysis, speaker recognition, identification of person

Procedia PDF Downloads 188
21648 Statistical Analysis of Interferon-γ for the Effectiveness of an Anti-Tuberculous Treatment

Authors: Shishen Xie, Yingda L. Xie

Abstract:

Tuberculosis (TB) is a potentially serious infectious disease that remains a health concern. The Interferon Gamma Release Assay (IGRA) is a blood test to find out if an individual is tuberculous positive or negative. This study applies statistical analysis to the clinical data of interferon-gamma levels of seventy-three subjects who diagnosed pulmonary TB in an anti-tuberculous treatment. Data analysis is performed to determine if there is a significant decline in interferon-gamma levels for the subjects during a period of six months, and to infer if the anti-tuberculous treatment is effective.

Keywords: data analysis, interferon gamma release assay, statistical methods, tuberculosis infection

Procedia PDF Downloads 205
21647 Quantitative Assessment of Soft Tissues by Statistical Analysis of Ultrasound Backscattered Signals

Authors: Da-Ming Huang, Ya-Ting Tsai, Shyh-Hau Wang

Abstract:

Ultrasound signals backscattered from the soft tissues are mainly depending on the size, density, distribution, and other elastic properties of scatterers in the interrogated sample volume. The quantitative analysis of ultrasonic backscattering is frequently implemented using the statistical approach due to that of backscattering signals tends to be with the nature of the random variable. Thus, the statistical analysis, such as Nakagami statistics, has been applied to characterize the density and distribution of scatterers of a sample. Yet, the accuracy of statistical analysis could be readily affected by the receiving signals associated with the nature of incident ultrasound wave and acoustical properties of samples. Thus, in the present study, efforts were made to explore such effects as the ultrasound operational modes and attenuation of biological tissue on the estimation of corresponding Nakagami statistical parameter (m parameter). In vitro measurements were performed from healthy and pathological fibrosis porcine livers using different single-element ultrasound transducers and duty cycles of incident tone burst ranging respectively from 3.5 to 7.5 MHz and 10 to 50%. Results demonstrated that the estimated m parameter tends to be sensitively affected by the use of ultrasound operational modes as well as the tissue attenuation. The healthy and pathological tissues may be characterized quantitatively by m parameter under fixed measurement conditions and proper calibration.

Keywords: ultrasound backscattering, statistical analysis, operational mode, attenuation

Procedia PDF Downloads 213
21646 Statistical Classification, Downscaling and Uncertainty Assessment for Global Climate Model Outputs

Authors: Queen Suraajini Rajendran, Sai Hung Cheung

Abstract:

Statistical down scaling models are required to connect the global climate model outputs and the local weather variables for climate change impact prediction. For reliable climate change impact studies, the uncertainty associated with the model including natural variability, uncertainty in the climate model(s), down scaling model, model inadequacy and in the predicted results should be quantified appropriately. In this work, a new approach is developed by the authors for statistical classification, statistical down scaling and uncertainty assessment and is applied to Singapore rainfall. It is a robust Bayesian uncertainty analysis methodology and tools based on coupling dependent modeling error with classification and statistical down scaling models in a way that the dependency among modeling errors will impact the results of both classification and statistical down scaling model calibration and uncertainty analysis for future prediction. Singapore data are considered here and the uncertainty and prediction results are obtained. From the results obtained, directions of research for improvement are briefly presented.

Keywords: statistical downscaling, global climate model, climate change, uncertainty

Procedia PDF Downloads 243
21645 Lambda-Levelwise Statistical Convergence of a Sequence of Fuzzy Numbers

Authors: F. Berna Benli, Özgür Keskin

Abstract:

Lately, many mathematicians have been studied the statistical convergence of a sequence of fuzzy numbers. We know that Lambda-statistically convergence is a kind of convergence between ordinary convergence and statistical convergence. In this paper, we will introduce the new kind of convergence such as λ-levelwise statistical convergence. Then, we will define the concept of the λ-levelwise statistical cluster and limit points of a sequence of fuzzy numbers. Also, we will discuss the relations between the sets of λ-levelwise statistical cluster points and λ-levelwise statistical limit points of sequences of fuzzy numbers. This work has been extended in this paper, where some relations have been considered such that when lambda-statistical limit inferior and lambda-statistical limit superior for lambda-statistically convergent sequences of fuzzy numbers are equal. Furthermore, lambda-statistical boundedness condition for different sequences of fuzzy numbers has been studied.

Keywords: fuzzy number, λ-levelwise statistical cluster points, λ-levelwise statistical convergence, λ-levelwise statistical limit points, λ-statistical cluster points, λ-statistical convergence, λ-statistical limit points

Procedia PDF Downloads 322
21644 Summarizing Data Sets for Data Mining by Using Statistical Methods in Coastal Engineering

Authors: Yunus Doğan, Ahmet Durap

Abstract:

Coastal regions are the one of the most commonly used places by the natural balance and the growing population. In coastal engineering, the most valuable data is wave behaviors. The amount of this data becomes very big because of observations that take place for periods of hours, days and months. In this study, some statistical methods such as the wave spectrum analysis methods and the standard statistical methods have been used. The goal of this study is the discovery profiles of the different coast areas by using these statistical methods, and thus, obtaining an instance based data set from the big data to analysis by using data mining algorithms. In the experimental studies, the six sample data sets about the wave behaviors obtained by 20 minutes of observations from Mersin Bay in Turkey and converted to an instance based form, while different clustering techniques in data mining algorithms were used to discover similar coastal places. Moreover, this study discusses that this summarization approach can be used in other branches collecting big data such as medicine.

Keywords: clustering algorithms, coastal engineering, data mining, data summarization, statistical methods

Procedia PDF Downloads 276
21643 A Cross-Dialect Statistical Analysis of Final Declarative Intonation in Tuvinian

Authors: D. Beziakina, E. Bulgakova

Abstract:

This study continues the research on Tuvinian intonation and presents a general cross-dialect analysis of intonation of Tuvinian declarative utterances, specifically the character of the tone movement in order to test the hypothesis about the prevalence of level tone in some Tuvinian dialects. The results of the analysis of basic pitch characteristics of Tuvinian speech (in general and in comparison with two other Turkic languages - Uzbek and Azerbaijani) are also given in this paper. The goal of our work was to obtain the ranges of pitch parameter values typical for Tuvinian speech. Such language-specific values can be used in speaker identification systems in order to get more accurate results of ethnic speech analysis. We also present the results of a cross-dialect analysis of declarative intonation in the poorly studied Tuvinian language.

Keywords: speech analysis, statistical analysis, speaker recognition, identification of person

Procedia PDF Downloads 350
21642 Statistical Characteristics of Code Formula for Design of Concrete Structures

Authors: Inyeol Paik, Ah-Ryang Kim

Abstract:

In this research, a statistical analysis is carried out to examine the statistical properties of the formula given in the design code for concrete structures. The design formulas of the Korea highway bridge design code - the limit state design method (KHBDC) which is the current national bridge design code and the design code for concrete structures by Korea Concrete Institute (KCI) are applied for the analysis. The safety levels provided by the strength formulas of the design codes are defined based on the probabilistic and statistical theory.KHBDC is a reliability-based design code. The load and resistance factors of this code were calibrated to attain the target reliability index. It is essential to define the statistical properties for the design formulas in this calibration process. In general, the statistical characteristics of a member strength are due to the following three factors. The first is due to the difference between the material strength of the actual construction and that used in the design calculation. The second is the difference between the actual dimensions of the constructed sections and those used in design calculation. The third is the difference between the strength of the actual member and the formula simplified for the design calculation. In this paper, the statistical study is focused on the third difference. The formulas for calculating the shear strength of concrete members are presented in different ways in KHBDC and KCI. In this study, the statistical properties of design formulas were obtained through comparison with the database which comprises the experimental results from the reference publications. The test specimen was either reinforced with the shear stirrup or not. For an applied database, the bias factor was about 1.12 and the coefficient of variation was about 0.18. By applying the statistical properties of the design formula to the reliability analysis, it is shown that the resistance factors of the current design codes satisfy the target reliability indexes of both codes. Also, the minimum resistance factors of the KHBDC which is written in the material resistance factor format and KCE which is in the member resistance format are obtained and the results are presented. A further research is underway to calibrate the resistance factors of the high strength and high-performance concrete design guide.

Keywords: concrete design code, reliability analysis, resistance factor, shear strength, statistical property

Procedia PDF Downloads 211
21641 The Use of Multivariate Statistical and GIS for Characterization Groundwater Quality in Laghouat Region, Algeria

Authors: Rouighi Mustapha, Bouzid Laghaa Souad, Rouighi Tahar

Abstract:

Due to rain Shortage and the increase of population in the last years, wells excavation and groundwater use for different purposes had been increased without any planning. This is a great challenge for our country. Moreover, this scarcity of water resources in this region is unfortunately combined with rapid fresh water resources quality deterioration, due to salinity and contamination processes. Therefore, it is necessary to conduct the studies about groundwater quality in Algeria. In this work consists in the identification of the factors which influence the water quality parameters in Laghouat region by using statistical analysis Principal Component Analysis (PCA), Hierarchical Cluster Analysis (HCA) and geographic information system (GIS) in an attempt to discriminate the sources of the variation of water quality variations. The results of PCA technique indicate that variables responsible for water quality composition are mainly related to soluble salts variables; natural processes and the nature of the rock which modifies significantly the water chemistry. Inferred from the positive correlation between K+ and NO3-, NO3- is believed to be human induced rather than naturally originated. In this study, the multivariate statistical analysis and GIS allows the hydrogeologist to have supplementary tools in the characterization and evaluating of aquifers.

Keywords: cluster, analysis, GIS, groundwater, laghouat, quality

Procedia PDF Downloads 218
21640 Forecasting the Influences of Information and Communication Technology on the Structural Changes of Japanese Industrial Sectors: A Study Using Statistical Analysis

Authors: Ubaidillah Zuhdi, Shunsuke Mori, Kazuhisa Kamegai

Abstract:

The purpose of this study is to forecast the influences of Information and Communication Technology (ICT) on the structural changes of Japanese economies based on Leontief Input-Output (IO) coefficients. This study establishes a statistical analysis to predict the future interrelationships among industries. We employ the Constrained Multivariate Regression (CMR) model to analyze the historical changes of input-output coefficients. Statistical significance of the model is then tested by Likelihood Ratio Test (LRT). In our model, ICT is represented by two explanatory variables, i.e. computers (including main parts and accessories) and telecommunications equipment. A previous study, which analyzed the influences of these variables on the structural changes of Japanese industrial sectors from 1985-2005, concluded that these variables had significant influences on the changes in the business circumstances of Japanese commerce, business services and office supplies, and personal services sectors. The projected future Japanese economic structure based on the above forecast generates the differentiated direct and indirect outcomes of ICT penetration.

Keywords: forecast, ICT, industrial structural changes, statistical analysis

Procedia PDF Downloads 262
21639 Risks in Forestry Operations, Analysis of Fatal Accidents

Authors: Rino Gubiani, Gianfranco Pergher

Abstract:

The work focused on the statistical analysis of accidents in the forestry sector (2000-2020) in Friuli-Venezia Giulia region, located in the North-East of Italy. The aim of the work was to analyse the evolution of the casualties throughout time and to evaluate possible improvements in the sector. It was shown that even nowadays the rate of accidents in forestry work is higher compared with all the other sectors, including agriculture; moreover, it was highlighted that some accidents remained present throughout the whole analysed range, such as slipping on the soil, being hit by trees and falling down from the plants. The results showed that an increase in forestry exploitation could even increase the total number of accidents, if advanced technological machines, such as cable cranes, would not implemented, given the fact that there is also a significant number of old people (above 50 years old) working in the sector.

Keywords: safety, forestry work, accidents, risk analysis, casualties, statistical analysis

Procedia PDF Downloads 19
21638 Investigation of the Main Trends of Tourist Expenses in Georgia

Authors: Nino Abesadze, Marine Mindorashvili, Nino Paresashvili

Abstract:

The main purpose of the article is to make complex statistical analysis of tourist expenses of foreign visitors. We used mixed technique of selection that implies rules of random and proportional selection. Computer software SPSS was used to compute statistical data for corresponding analysis. Corresponding methodology of tourism statistics was implemented according to international standards. Important information was collected and grouped from the major Georgian airports. Techniques of statistical observation were prepared. A representative population of foreign visitors and a rule of selection of respondents were determined. We have a trend of growth of tourist numbers and share of tourists from post-soviet countries constantly increases. Level of satisfaction with tourist facilities and quality of service has grown, but still we have a problem of disparity between quality of service and prices. The design of tourist expenses of foreign visitors is diverse; competitiveness of tourist products of Georgian tourist companies is higher.

Keywords: tourist, expenses, methods, statistics, analysis

Procedia PDF Downloads 234
21637 Students' Statistical Reasoning and Attitudes towards Statistics in Blended Learning, E-Learning and On-Campus Learning

Authors: Petros Roussos

Abstract:

The present study focused on students' statistical reasoning related to Null Hypothesis Statistical Testing and p-values. Its objective was to test the hypothesis that neither the place (classroom, at a distance, online) nor the medium that actually supports the learning (ICT, internet, books) has an effect on understanding of statistical concepts. In addition, it was expected that students' attitudes towards statistics would not predict understanding of statistical concepts. The sample consisted of 385 undergraduate and postgraduate students from six state and private universities (five in Greece and one in Cyprus). Students were administered two questionnaires: a) the Greek version of the Survey of Attitudes Toward Statistics, and b) a short instrument which measures students' understanding of statistical significance and p-values. Results suggest that attitudes towards statistics do not predict students' understanding of statistical concepts, whereas the medium did not have an effect.

Keywords: attitudes towards statistics, blended learning, e-learning, statistical reasoning

Procedia PDF Downloads 206
21636 Data and Spatial Analysis for Economy and Education of 28 E.U. Member-States for 2014

Authors: Alexiou Dimitra, Fragkaki Maria

Abstract:

The objective of the paper is the study of geographic, economic and educational variables and their contribution to determine the position of each member-state among the EU-28 countries based on the values of seven variables as given by Eurostat. The Data Analysis methods of Multiple Factorial Correspondence Analysis (MFCA) Principal Component Analysis and Factor Analysis have been used. The cross tabulation tables of data consist of the values of seven variables for the 28 countries for 2014. The data are manipulated using the CHIC Analysis V 1.1 software package. The results of this program using MFCA and Ascending Hierarchical Classification are given in arithmetic and graphical form. For comparison reasons with the same data the Factor procedure of Statistical package IBM SPSS 20 has been used. The numerical and graphical results presented with tables and graphs, demonstrate the agreement between the two methods. The most important result is the study of the relation between the 28 countries and the position of each country in groups or clouds, which are formed according to the values of the corresponding variables.

Keywords: Multiple Factorial Correspondence Analysis, Principal Component Analysis, Factor Analysis, E.U.-28 countries, Statistical package IBM SPSS 20, CHIC Analysis V 1.1 Software, Eurostat.eu Statistics

Procedia PDF Downloads 322
21635 Chemometric QSRR Evaluation of Behavior of s-Triazine Pesticides in Liquid Chromatography

Authors: Lidija R. Jevrić, Sanja O. Podunavac-Kuzmanović, Strahinja Z. Kovačević

Abstract:

This study considers the selection of the most suitable in silico molecular descriptors that could be used for s-triazine pesticides characterization. Suitable descriptors among topological, geometrical and physicochemical are used for quantitative structure-retention relationships (QSRR) model establishment. Established models were obtained using linear regression (LR) and multiple linear regression (MLR) analysis. In this paper, MLR models were established avoiding multicollinearity among the selected molecular descriptors. Statistical quality of established models was evaluated by standard and cross-validation statistical parameters. For detection of similarity or dissimilarity among investigated s-triazine pesticides and their classification, principal component analysis (PCA) and hierarchical cluster analysis (HCA) were used and gave similar grouping. This study is financially supported by COST action TD1305.

Keywords: chemometrics, classification analysis, molecular descriptors, pesticides, regression analysis

Procedia PDF Downloads 253
21634 Chemical Variability in the Essential Oils from the Leaves and Buds of Syzygium Species

Authors: Rabia Waseem, Low Kah Hin, Najihah Mohamed Hashim

Abstract:

The variability in the chemical components of the Syzygium species essential oils has been evaluated. The leaves of Syzygium species have been collected from Perak, Malaysia. The essential oils extracted by using the conventional Hydro-distillation extraction procedure and analyzed by using Gas chromatography System attached with Mass Spectrometry (GCMS). Twenty-seven constituents were found in Syzygium species in which the major constituents include: α-Pinene (3.94%), α-Thujene (2.16%), α-Terpineol (2.95%), g-Elemene (2.89%) and D-Limonene (14.59%). The aim of this study was the comparison between the evaluated data and existing literature to fortify the major variability through statistical analysis.

Keywords: chemotaxonomy, cluster analysis, essential oil, medicinal plants, statistical analysis

Procedia PDF Downloads 169
21633 A Method of Detecting the Difference in Two States of Brain Using Statistical Analysis of EEG Raw Data

Authors: Digvijaysingh S. Bana, Kiran R. Trivedi

Abstract:

This paper introduces various methods for the alpha wave to detect the difference between two states of brain. One healthy subject participated in the experiment. EEG was measured on the forehead above the eye (FP1 Position) with reference and ground electrode are on the ear clip. The data samples are obtained in the form of EEG raw data. The time duration of reading is of one minute. Various test are being performed on the alpha band EEG raw data.The readings are performed in different time duration of the entire day. The statistical analysis is being carried out on the EEG sample data in the form of various tests.

Keywords: electroencephalogram(EEG), biometrics, authentication, EEG raw data

Procedia PDF Downloads 341
21632 Statistical Analysis to Select Evacuation Route

Authors: Zaky Musyarof, Dwi Yono Sutarto, Dwima Rindy Atika, R. B. Fajriya Hakim

Abstract:

Each country should be responsible for the safety of people, especially responsible for the safety of people living in disaster-prone areas. One of those services is provides evacuation route for them. But all this time, the selection of evacuation route is seem doesn’t well organized, it could be seen that when a disaster happen, there will be many accumulation of people on the steps of evacuation route. That condition is dangerous to people because hampers evacuation process. By some methods in Statistical analysis, author tries to give a suggestion how to prepare evacuation route which is organized and based on people habit. Those methods are association rules, sequential pattern mining, hierarchical cluster analysis and fuzzy logic.

Keywords: association rules, sequential pattern mining, cluster analysis, fuzzy logic, evacuation route

Procedia PDF Downloads 358
21631 Variable Selection in a Data Envelopment Analysis Model by Multiple Proportions Comparison

Authors: Jirawan Jitthavech, Vichit Lorchirachoonkul

Abstract:

A statistical procedure using multiple comparisons test for proportions is proposed for variable selection in a data envelopment analysis (DEA) model. The test statistic in the multiple comparisons is the proportion of efficient decision making units (DMUs) in a DEA model. Three methods of multiple comparisons test for proportions: multiple Z tests with Bonferroni correction, multiple tests in 2Xc crosstabulation and the Marascuilo procedure, are used in the proposed statistical procedure of iteratively eliminating the variables in a backward manner. Two simulation populations of moderately and lowly correlated variables are used to compare the results of the statistical procedure using three methods of multiple comparisons test for proportions with the hypothesis testing of the efficiency contribution measure. From the simulation results, it can be concluded that the proposed statistical procedure using multiple Z tests for proportions with Bonferroni correction clearly outperforms the proposed statistical procedure using the remaining two methods of multiple comparisons and the hypothesis testing of the efficiency contribution measure.

Keywords: Bonferroni correction, efficient DMUs, Marascuilo procedure, Pastor et al. method, 2xc crosstabulation

Procedia PDF Downloads 180
21630 Reduction in Hot Metal Silicon through Statistical Analysis at G-Blast Furnace, Tata Steel Jamshedpur

Authors: Shoumodip Roy, Ankit Singhania, Santanu Mallick, Abhiram Jha, M. K. Agarwal, R. V. Ramna, Uttam Singh

Abstract:

The quality of hot metal at any blast furnace is judged by the silicon content in it. Lower hot metal silicon not only enhances process efficiency at steel melting shops but also reduces hot metal costs. The Hot metal produced at G-Blast furnace Tata Steel Jamshedpur has a significantly higher Si content than Benchmark Blast furnaces. The higher content of hot metal Si is mainly due to inferior raw material quality than those used in benchmark blast furnaces. With minimum control over raw material quality, the only option left to control hot metal Si is via optimizing the furnace parameters. Therefore, in order to identify the levers to reduce hot metal Si, Data mining was carried out, and multiple regression models were developed. The statistical analysis revealed that Slag B3{(CaO+MgO)/SiO2}, Slag Alumina and Hot metal temperature are key controllable parameters affecting hot metal silicon. Contour Plots were used to determine the optimum range of levels identified through statistical analysis. A trial plan was formulated to operate relevant parameters, at G blast furnace, in the identified range to reduce hot metal silicon. This paper details out the process followed and subsequent reduction in hot metal silicon by 15% at G blast furnace.

Keywords: blast furnace, optimization, silicon, statistical tools

Procedia PDF Downloads 105
21629 Detect Circles in Image: Using Statistical Image Analysis

Authors: Fathi M. O. Hamed, Salma F. Elkofhaifee

Abstract:

The aim of this work is to detect geometrical shape objects in an image. In this paper, the object is considered to be as a circle shape. The identification requires find three characteristics, which are number, size, and location of the object. To achieve the goal of this work, this paper presents an algorithm that combines from some of statistical approaches and image analysis techniques. This algorithm has been implemented to arrive at the major objectives in this paper. The algorithm has been evaluated by using simulated data, and yields good results, and then it has been applied to real data.

Keywords: image processing, median filter, projection, scale-space, segmentation, threshold

Procedia PDF Downloads 271
21628 Analysis on Prediction Models of TBM Performance and Selection of Optimal Input Parameters

Authors: Hang Lo Lee, Ki Il Song, Hee Hwan Ryu

Abstract:

An accurate prediction of TBM(Tunnel Boring Machine) performance is very difficult for reliable estimation of the construction period and cost in preconstruction stage. For this purpose, the aim of this study is to analyze the evaluation process of various prediction models published since 2000 for TBM performance, and to select the optimal input parameters for the prediction model. A classification system of TBM performance prediction model and applied methodology are proposed in this research. Input and output parameters applied for prediction models are also represented. Based on these results, a statistical analysis is performed using the collected data from shield TBM tunnel in South Korea. By performing a simple regression and residual analysis utilizinFg statistical program, R, the optimal input parameters are selected. These results are expected to be used for development of prediction model of TBM performance.

Keywords: TBM performance prediction model, classification system, simple regression analysis, residual analysis, optimal input parameters

Procedia PDF Downloads 180
21627 Comparison of Statistical Methods for Estimating Missing Precipitation Data in the River Subbasin Lenguazaque, Colombia

Authors: Miguel Cañon, Darwin Mena, Ivan Cabeza

Abstract:

In this work was compared and evaluated the applicability of statistical methods for the estimation of missing precipitations data in the basin of the river Lenguazaque located in the departments of Cundinamarca and Boyacá, Colombia. The methods used were the method of simple linear regression, distance rate, local averages, mean rates, correlation with nearly stations and multiple regression method. The analysis used to determine the effectiveness of the methods is performed by using three statistical tools, the correlation coefficient (r2), standard error of estimation and the test of agreement of Bland and Altmant. The analysis was performed using real rainfall values removed randomly in each of the seasons and then estimated using the methodologies mentioned to complete the missing data values. So it was determined that the methods with the highest performance and accuracy in the estimation of data according to conditions that were counted are the method of multiple regressions with three nearby stations and a random application scheme supported in the precipitation behavior of related data sets.

Keywords: statistical comparison, precipitation data, river subbasin, Bland and Altmant

Procedia PDF Downloads 358
21626 Statistical Convergence for the Approximation of Linear Positive Operators

Authors: Neha Bhardwaj

Abstract:

In this paper, we consider positive linear operators and study the Voronovskaya type result of the operator then obtain an error estimate in terms of the higher order modulus of continuity of the function being approximated and its A-statistical convergence. Also, we compute the corresponding rate of A-statistical convergence for the linear positive operators.

Keywords: Poisson distribution, Voronovskaya, modulus of continuity, a-statistical convergence

Procedia PDF Downloads 187
21625 South African Students' Statistical Literacy in the Conceptual Understanding about Measures of Central Tendency after Completing Their High School Studies

Authors: Lukanda Kalobo

Abstract:

In South Africa, the High School Mathematics Curriculum provides teachers with specific aims and skills to be developed which involves the understanding about the measures of central tendency. The exploration begins with the definitions of statistical literacy, measurement of central tendency and a discussion on why statistical literacy is essential today. It furthermore discusses the statistical literacy basics involved in understanding the concepts of measures of central tendency. The statistical literacy test on the measures of central tendency, was used to collect data which was administered to 78 first year students direct from high schools. The results indicated that students seemed to have forgotten about the statistical literacy in understanding the concepts of measure of central tendency after completing their high school study. The authors present inferences regarding the alignment between statistical literacy and the understanding of the concepts about the measures of central tendency, leading to the conclusion that there is a need to provide in-service and pre-service training.

Keywords: conceptual understanding, mean, median, mode, statistical literacy

Procedia PDF Downloads 163
21624 Series-Parallel Systems Reliability Optimization Using Genetic Algorithm and Statistical Analysis

Authors: Essa Abrahim Abdulgader Saleem, Thien-My Dao

Abstract:

The main objective of this paper is to optimize series-parallel system reliability using Genetic Algorithm (GA) and statistical analysis; considering system reliability constraints which involve the redundant numbers of selected components, total cost, and total weight. To perform this work, firstly the mathematical model which maximizes system reliability subject to maximum system cost and maximum system weight constraints is presented; secondly, a statistical analysis is used to optimize GA parameters, and thirdly GA is used to optimize series-parallel systems reliability. The objective is to determine the strategy choosing the redundancy level for each subsystem to maximize the overall system reliability subject to total cost and total weight constraints. Finally, the series-parallel system case study reliability optimization results are showed, and comparisons with the other previous results are presented to demonstrate the performance of our GA.

Keywords: reliability, optimization, meta-heuristic, genetic algorithm, redundancy

Procedia PDF Downloads 207