Search results for: prophylactic antiviral
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 188

Search results for: prophylactic antiviral

188 CRISPR Technology: A Tool in the Potential Cure for COVID-19 Virus

Authors: Chijindu Okpalaoka, Charles Chinedu Onuselogu

Abstract:

COVID-19, humanity's coronavirus disease caused by SARS-CoV-2, was first detected in late 2019 in Wuhan, China. COVID-19 lacked an established conventional pharmaceutical therapy, and as a result, the outbreak quickly became an epidemic affecting the entire World. Only a qPCR assay is reliable for diagnosing COVID-19. Clustered, regularly interspaced short palindromic repeats (CRISPR) technology is being researched for speedy and specific identification of COVID-19, among other therapeutic techniques. Apart from its therapeutic capabilities, the CRISPR technique is being evaluated to develop antiviral therapies; nevertheless, no CRISPR-based medication has been approved for human use to date. Prophylactic antiviral CRISPR in living being cells, a Cas 13-based approach against coronavirus, has been developed. While this method can be evolved into a treatment approach, it may face substantial obstacles in human clinical trials for licensure. This study discussed the potential applications of CRISPR-based techniques for developing a speedy and accurate feasible treatment alternative for the COVID-19 virus.

Keywords: COVID-19, CRISPR technique, Cas13, SARS-CoV-2, prophylactic antiviral

Procedia PDF Downloads 96
187 Dual-functional Peptide With Defective Interfering Genes Protecting Mice From Avian and Seasonal Influenza Virus Infection

Authors: Hanjun Zhao

Abstract:

Limited efficacy of current antivirals and antiviral-resistant mutations impair anti-influenza treatment. Here, we evaluated the in vitro and in vivo antiviral effect of three defective interfering genes (DIG-3) of influenza virus. Virus replication was significantly reduced in 293T and A549 cells transfected with DIG-3. Mice transfected with DIG-3 encoded by jetPEI-vector, as prophylaxis and therapeutics against A(H7N7) virus respectively, had significantly better survivals (80% and 50%) than control mice (0%). We further developed a dual-functional peptide TAT-P1, which delivers DIG-3 with high transfection efficiency and concomitantly exerts antiviral activity by preventing endosomal acidification. TAT-P1/DIG-3 was more effective than jetPEI/DIG-3 in treating A(H7N7) or A(H1N1)pdm09-infected mice and showed potent prophylactic protection on A(H7N7) or A(H1N1)pdm09-infected mice. The addition of P1 peptide, preventing endosomal acidification, could enhance the protection of TAT-P1/DIG-3 on A(H1N1)pdm09-infected mice. Dual-functional TAT-P1 with DIG-3 can effectively protect or treat mice infected by avian and seasonal influenza virus infection.

Keywords: antiviral peptide, dual-functional peptide, defective interfering genes, influenza virus

Procedia PDF Downloads 85
186 A Novel Peptide Showing Universal Effect against Multiple Viruses in Vitro and in Vivo

Authors: Hanjun Zhao, Ke Zhang, Bojian Zheng

Abstract:

Background: So far, there is no universal antiviral agent which can inhibit multiple viral infections. More and more drug-resistant viral strains emerge after the antiviral drug application for treatment. Defensins are the front line of host innate immunity and have broad spectrum antibacterial and antiviral effects. However, there is limited data to show if these defensins have good antiviral activity in vivo and what the antiviral mechanism is. Subjects: To investigate a peptide with widespread antivirus activity in vitro and in vivo and illustrate the antiviral mechanism. Methods: Antiviral peptide library designed from mouse beta defensins was synthesized by the company. Recombinant beta defensin was obtained from E. coli. Antiviral activity in vitro was assayed by plaque assay, qPCR. Antiviral activity in vivo was detected by animal challenge with 2009 pandemic H1N1 influenza A virus. The antiviral mechanism was assayed by western blot, ELISA, and qPCR. Conclusions: We identify a new peptide which has widespread effects against multiple viruses (H1N1, H5N1, H7N9, MERS-CoV) in vitro and has efficient antivirus activity in vivo. This peptide inhibits viral entry into target cells and subsequently blocks viral replication. The in vivo study of the antiviral peptide against other viral infections and the investigation of its more detail antiviral mechanism are ongoing.

Keywords: antiviral peptide, defensin, Influenza A virus, mechanism

Procedia PDF Downloads 369
185 Cervical Cerclage and Neonatal Death

Authors: Zinah Jabbar Mohammed Alrubaye

Abstract:

Objective: The purpose of this study was to compare the efficacy of prophylactic and rescue cervical cerclages for pregnant patients with an incompetent cervix, and to assess the neonatal outcomes of both clinical conditions. Methods: This was a retrospective observational study of all women who had an elective or rescue cerclage between January 2008 and December 2016 in our hospital .Prophylactic cerclage was defined as a cerclage before 16 weeks of gestation, while rescue cerclages were performed between 16 and 23 weeks of gestation. Results: In total, we analyzed the outcomes of 212 cervical interventions; 71% of the recruited patients experienced prophylactic cerclage, while 29% underwent rescue cerclage. Most of the patients delivered vaginally (70%) and were able to leave the hospital with a healthy newborn (78%). The mean pregnancy prolongation time after cerclage in the prophylactic and rescue groups were 21 weeks and 10 weeks, respectively. Conclusion: Prophylactic cerclage interventions are most likely to be associated with a reduction of fetal demise because of the correlation between fetal prognosis and the gestational age at which cerclage is performed. Once the diagnosis of cervical insufficiency is confirmed, cerclage should be recommended as this will help to prolong the pregnancy.

Keywords: cervical, neonate, cerclage, Cervix

Procedia PDF Downloads 18
184 Prophylactic Replacement of Voice Prosthesis: A Study to Predict Prosthesis Lifetime

Authors: Anne Heirman, Vincent van der Noort, Rob van Son, Marije Petersen, Lisette van der Molen, Gyorgy Halmos, Richard Dirven, Michiel van den Brekel

Abstract:

Objective: Voice prosthesis leakage significantly impacts laryngectomies patients' quality of life, causing insecurity and frequent unplanned hospital visits and costs. In this study, the concept of prophylactic voice prosthesis replacement was explored to prevent leakages. Study Design: A retrospective cohort study. Setting: Tertiary hospital. Methods: Device lifetimes and voice prosthesis replacements of a retrospective cohort, including all patients with laryngectomies between 2000 and 2012 in the Netherlands Cancer Institute, were used to calculate the number of needed voice prostheses per patient per year when preventing 70% of the leakages by prophylactic replacement. Various strategies for the timing of prophylactic replacement were considered: Adaptive strategies based on the individual patient’s history of replacement and fixed strategies based on the results of patients with similar voice prosthesis or treatment characteristics. Results: Patients used a median of 3.4 voice prostheses per year (range 0.1-48.1). We found a high inter-and intrapatient variability in device lifetime. When applying prophylactic replacement, this would become a median of 9.4 voice prostheses per year, which means replacement every 38 days, implying more than six additional voice prostheses per patient per year. The individual adaptive model showed that preventing 70% of the leakages was impossible for most patients, and only a median of 25% can be prevented. Monte-Carlo simulations showed that prophylactic replacement is not feasible due to the high Coefficient of Variation (Standard Deviation/Mean) in device lifetime. Conclusion: Based on our simulations, prophylactic replacement of voice prostheses is not feasible due to high inter-and intrapatient variation in device lifetime.

Keywords: voice prosthesis, voice rehabilitation, total laryngectomy, prosthetic leakage, device lifetime

Procedia PDF Downloads 96
183 Distinct Antiviral Pathway for ZFP36-Like Family Members Against Flavivirus Infection

Authors: Ren-Jye Lin, Li-Hsiung Lin, Bing-Cheng Liu, Ching-Len Liao

Abstract:

The human zinc finger protein 36-like protein family, containing zinc finger protein 36-like 1 (ZFP36L1) and zinc finger protein 36-like 2 (ZFP36L2), belongs to CCCH-type zinc-finger protein identified as an RNA-binding protein that participates in controlling posttranscriptional regulation via RNA decay pathways. Recently, we demonstrated that human ZFP36L1 showed potent antiviral activity against flavivirus Infection by both 5´-3´ XRN1 and 3´-5´RNA-exosome RNA decay pathways (Journal of Virology 2022 Jan 12;96(1): e0166521). However, another zinc finger protein 36-like protein member, ZFP36L2, in the host defense response against flaviviruses has yet to be addressed. Here, we also demonstrate that ZFP36L2 functions as a host innate defender against flaviviruses, including Japanese encephalitis virus (JEV) and dengue virus (DENV). Overexpression of ZFP36L2 reduced JEV and DENV infection, and ZFP36L2 knockdown significantly promoted viral replication. Distinct from the antiviral mechanism of ZFP36L1, ZFP36L2 inhibits flavivirus infection by only a 5´-3´ XRN1-mediated RNA decay pathway but not the 3´-5´RNA-exosome RNA decay pathway. Human ZFP36L1 and ZFP36L2 can restrict flavivirus replication by directly binding and destabilizing viral RNA. Thus, for the first time, human zinc finger protein 36-like family members, ZFP36L1 and ZFP36L2, are identified as host antiviral factors that can bind and degrade flavivirus viral RNA by diverse antiviral mechanisms.

Keywords: ZFP36L1, ZFP36L2, 5'-3' exonuclease XRN1, antiviral mechansim

Procedia PDF Downloads 43
182 Correlation of Structure and Antiviral Activity of Alkaloids of Polygonum L. Plants Growing in Kazakhstan

Authors: Dmitry Yu. Korulkin, Raissa A. Muzychkina

Abstract:

Currently to treat infectious diseases bioactive substances of plant origin having fewer side effects than synthetic medicines and medicines similar to natural components of a human body by the structure and action, become very important. One of the groups of secondary metabolites of the plants - alkaloids can be related the number of the most promising sources of medicines of plant origin. Currently, the structure of more than 7500 compounds has been identified. Analyzing the scope of research in the field of chemistry, pharmacology and technology of alkaloids, we can make a conclusion about that there is no system approach during the research of relation structure-activity on different groups of these substances. It is connected not only with a complex structure of their molecules, but also with insufficient information on the nature of their effect on organs, tissues and other targets in organism. The purpose of this research was to identify pharmacophore groups in the structure of alkaloids of endemic Polygonum L. plants growing in Kazakhstan responsible for their antiviral action. To isolate alkaloids pharmacopoeian methods were used. Antiviral activity of alkaloids of Polygonum L. plants was researched in the Institute of Microbiology and Virology of the Ministry of Education and Science of the Republic of Kazakhstan. Virus-inhibiting properties of compounds were studies in experiments with ortho- and paramyxoviruses on the model of chick-embryos. Anti-viral properties were determined using ‘screening test’ method designed to neutralization of a virus at the amount of 100EID50 with set concentrations of medicines. The difference of virus titer compared to control group was deemed as the criterion of antiviral action. It has been established that Polygonum L. alkaloids has high antiviral effect to influenza and parainfluenza viruses. The analysis of correlation of the structure and antiviral activity of alkaloids allowed identifying the main pharmacophore groups, among which the most important are glycosidation, the presence of carbonyl and hydroxyl groups, molecular weight and molecular size.

Keywords: alkaloids, antiviral, bioactive substances, isolation, pharmacophore groups, Polygonum L.

Procedia PDF Downloads 417
181 Phenolic Acids of Plant Origin as Promising Compounds for Elaboration of Antiviral Drugs against Influenza

Authors: Vladimir Berezin, Aizhan Turmagambetova, Andrey Bogoyavlenskiy, Pavel Alexyuk, Madina Alexyuk, Irina Zaitceva, Nadezhda Sokolova

Abstract:

Introduction: Influenza viruses could infect approximately 5% to 10% of the global human population annually, resulting in serious social and economic damage. Vaccination and etiotropic antiviral drugs are used for the prevention and treatment of influenza. Vaccination is important; however, antiviral drugs represent the second line of defense against new emerging influenza virus strains for which vaccines may be unsuccessful. However, the significant drawback of commercial synthetic anti-flu drugs is the appearance of drug-resistant influenza virus strains. Therefore, the search and development of new anti-flu drugs efficient against drug-resistant strains is an important medical problem for today. The aim of this work was a study of four phenolic acids of plant origin (Gallic, Syringic, Vanillic, and Protocatechuic acids) as a possible tool for treatment against influenza virus. Methods: Phenolic acids; gallic, syringic, vanillic, and protocatechuic have been prepared by extraction from plant tissues and purified using high-performance liquid chromatography fractionation. Avian influenza virus, strain A/Tern/South Africa/1/1961 (H5N3) and human epidemic influenza virus, strain A/Almaty/8/98 (H3N2) resistant to commercial anti-flu drugs (Rimantadine, Oseltamivir) were used for testing antiviral activity. Viruses were grown in the allantoic cavity of 10 days old chicken embryos. The chemotherapeutic index (CTI), determined as the ratio of an average toxic concentration of the tested compound (TC₅₀) to the average effective virus-inhibition concentration (EC₅₀), has been used as a criteria of specific antiviral action. Results: The results of study have shown that the structure of phenolic acids significantly affected their ability to suppress the reproduction of tested influenza virus strains. The highest antiviral activity among tested phenolic acids was detected for gallic acid, which contains three hydroxyl groups in the molecule at C3, C4, and C5 positions. Antiviral activity of gallic acid against A/H5N3 and A/H3N2 influenza virus strains was higher than antiviral activity of Oseltamivir and Rimantadine. gallic acid inhibited almost 100% of the infection activity of both tested viruses. Protocatechuic acid, which possesses 2 hydroxyl groups (C3 and C4) have shown weaker antiviral activity in comparison with gallic acid and inhibited less than 10% of virus infection activity. Syringic acid, which contains two hydroxyl groups (C3 and C5), was able to suppress up to 12% of infection activity. Substitution of two hydroxyl groups by methoxy groups resulted in the complete loss of antiviral activity. Vanillic acid, which is different from protocatechuic acid by replacing of C3 hydroxyl group to methoxy group, was able to suppress about 30% of infection activity of tested influenza viruses. Conclusion: For pronounced antiviral activity, the molecular of phenolic acid must have at least two hydroxyl groups. Replacement of hydroxyl groups to methoxy group leads to a reduction of antiviral properties. Gallic acid demonstrated high antiviral activity against influenza viruses, including Rimantadine and Oseltamivir resistant strains, and could be used as a potential candidate for the development of antiviral drug against influenza virus.

Keywords: antiviral activity, influenza virus, drug resistance, phenolic acids

Procedia PDF Downloads 107
180 Nagami Kumkuat: A Source of Antiviral and Antimicrobial Bioactive Compounds

Authors: Howaida I. Abd-Alla, Nagwa M. M. Shalaby

Abstract:

The fruit rind of Fortunella margarita (Nagami Kumkuat) was investigated for its chemical constituents. Thirteen metabolites were obtained and classified into, a sterol; β-sitosterol (1) and twelve phenolic compounds, three coumarins; xanthotoxin (2), isopimpinellin (3), umbelliferone (4), nine flavonoids of O-glycosides of flavone; apigenin-7-O-β-D-glucopyranoside (5), apigenin-7-O-rhamnoglucoside (rhoifolin) (6), C-glycosides; vitexin (7), vicenin II (8), and the methoxylated; 6-methoxyapigenin-7-methyl ether (9) and tangeretin (10) as well as flavanones class; naringenin (11), liquiritigenin (12), hesperdin (hesperetin-7-rhamnoglucoside) (13). All compounds were identified for the first time in F. margarita except compound (8). The major glycosides 5, 6, and 13 and total crude extract showed potential antiviral activity against live Newcastle disease virus vaccine strains (Komarov and LaSota) and live infectious bursitis viruses vaccine strain D78 replication in VERO cell cultures and on specific pathogen-free embryonated chicken eggs. Antiviral inhibitory concentration fifty (IC50), cytotoxic concentration fifty (CC50), and therapeutic index (TI) were calculated. In addition, the extract and compounds 7 and 13 showed marked antimicrobial activity against different strains of fungi, Gram-positive and negative bacteria, including some foodborne pathogens of animal origin, caused human disease. These results suggested that the extract of F. margarita may be considered potentially useful as a source of natural antiviral and antimicrobial agents. It can be used as an ingredient for functional food and/or pharmaceuticals.

Keywords: antimicrobial, antiviral, Fortunella margarita, Nagami Kumkuat, phenolic secondary metabolites

Procedia PDF Downloads 168
179 A Small-Molecular Inhibitor of Influenza Virus via Disrupting the PA and PB1 Interaction of the Viral Polymerase

Authors: Shuofeng Yuan, Bojian Zheng

Abstract:

Assembly of the heterotrimeric polymerase complex of influenza virus from the individual subunits PB1, PA, and PB2 is a prerequisite for viral replication, in which the interaction between the N-terminal of PB1 (PB1N) and the C terminal of PA (PAC) may be a desired target for antiviral development. In this study, we first compared the feasibility of high throughput screening by enzyme-linked immunosorbent assay (ELISA) and fluorescence polarization (FP) assay. Among the two, ELISA was demonstrated to own broader dynamic range so that it was used for screening inhibitors, which blocked PA and PB1 interaction. Several binding inhibitors of PAC-PB1N were identified and subsequently tested for the antiviral efficacy. Apparently, 3-(2-chlorophenyl)-6-ethyl-7-methyl[1,2,4]triazolo[4,3-a]pyrimidin-5-ol, designated ANA-1, was found to be a strong inhibitor of PAC-PB1N interaction and act as a potent antiviral agent against the infections of multiple subtypes of influenza A virus, including H1N1, H3N2, H5N1, H7N7, H7N9 and H9N2 subtypes, in cell cultures. Intranasal administration of ANA-1 protected mice from lethal challenge and reduced lung viral loads in H1N1 virus infected BALB/c mice. Docking analyses predicted that ANA-1 bound to an allosteric site of PAC, which would cause conformational changes thereby disrupting the PAC-PB1N interaction. Overall, our study has identified a novel compound with potential to be developed as an anti-influenza drug.

Keywords: influenza, antiviral, viral polymerase, compounds

Procedia PDF Downloads 321
178 Screening of Antiviral Compounds in Medicinal Plants: Non-Volatiles

Authors: Tomas Drevinskas, Ruta Mickiene, Audrius Maruska, Nicola Tiso, Algirdas Salomskas, Raimundas Lelesius, Agneta Karpovaite, Ona Ragazinskiene, Loreta Kubiliene

Abstract:

Antiviral effect of substances accumulated by plants and natural products is known to ethno-pharmacy and modern day medicine. Antiviral properties are usually assigned to volatile compounds and polyphenols. This research work is divided into several parts and the task of this part was to investigate potential plants, potential substances and potential preparation conditions that can be used for the preparation of antiviral agents. Sixteen different medicinal plants, their parts and two types of propolis were selected for screening. Firstly, extraction conditions of non-volatile compounds were investigated: 3 pre-selected plants were extracted with 5 different ethanol – water mixtures (96%, 75%, 60%, 40%, 20 %, vol.) and bidistilled water. Total phenolic content, total flavonoid content and radical scavenging activity was determined. The results indicated that optimal extrahent is 40%, vol. of ethanol – water mixture. Further investigations were performed with the extrahent of 40%, vol. ethanol – water mixture. All 16 of selected plants, their parts and two types of propolis were extracted using selected extrahent. Determined total phenolic content, total flavonoid content and radical scavenging activity indicated that extracts of Origanum Vulgare L., Mentha piperita L., Geranium macrorrhizum L., Melissa officinalis L. and Desmodium canadence L. contains highest amount of extractable phenolic compounds (7.31, 5.48, 7.88, 8.02 and 7.16 rutin equivalents (mg/ ml) respectively), flavonoid content (2.14, 2.23, 2.49, 0.79 and 1.51 rutin equivalents (mg/ml) respectively) and radical scavenging activity (11.98, 8.72, 13.47, 13.22 and 12.22 rutin equivalents (mg/ml) respectively). Composition of the extracts is analyzed using HPLC.

Keywords: antiviral effect, plants, propolis, phenols

Procedia PDF Downloads 298
177 Evaluation of the Antiviral Activity of Dermaseptin Analogs Against Zika Virus

Authors: Houda Haddad, Nolwen Jouvenet, Maxime Chazal, Frédéric Tangy, Amira Zairi

Abstract:

Zika virus represents the primary cause of infection during pregnancy and can lead to various neurological disorders, such as microcephaly and Guillain-Barré syndrome, affecting both children and adults. This infection is also associated with urological and nephrological problems. So far, evidence of mosquito-borne Zika virus infection has been reported in a total of 89 countries and territories. However, surveillance efforts primarily concentrate on outbreaks that this virus can cause, yet the measures implemented are typically limited. Currently, there are no specific treatments or vaccines designed for the prevention or treatment of Zika virus infection or its associated disease. The development of effective therapeutic agents presents an urgent need. Importantly, an alternative for advancing the discovery of molecules could be dermaseptins, a family of antimicrobial peptides known for their potential antiviral properties. In this study, we carried out the synthesis of dermaseptins and their analogs and subsequently assessed the bioactivity tests against Zika virus (ZIKV PF13) of dermaseptins B2 and S4 and their derivatives. The cytotoxicity of these peptides was investigated on the HMC3 cell line and HeLa cells by CellTiter-Glo® Luminescent Cell Viability Assay. Thereafter, we evaluated the antiviral activity caused by the action of our dermaseptins on the viral envelope using the Fluorescence Activated Cell Sorting (FACS). The cytotoxicity of our molecules was concentration-dependent at microgram concentrations except for dermaseptin B2 and its derivative, which present no toxicity against HeLa and HMC3 cell lines. It was observed that all tested analogs from the S4 family exhibited antiviral activity with low concentrations ranging from 3 to 12.5 μg/mL, unlike the native B2 and its derivative, which increased the infectivity. Pre-incubating of dermaseptins with ZIKV PF13 before infection revealed that these derivatives inhibit the initial stages of virus infection. In summary, these results suggest that dermaseptins could serve as lead structures for the development of potent antiviral agents against Zika virus infections.

Keywords: dermaseptin B2, dermaseptin S4, analogs, zika virus, neurological infections, antiviral activity

Procedia PDF Downloads 16
176 Early Transcriptome Responses to Piscine orthoreovirus-1 in Atlantic salmon Erythrocytes Compared to Salmonid Kidney Cell Lines

Authors: Thomais Tsoulia, Arvind Y. M. Sundaram, Stine Braaen, Øyvind Haugland, Espen Rimstad, Øystein Wessel, Maria K. Dahle

Abstract:

Fish red blood cells (RBC) are nucleated, and in addition to their function in gas exchange, they have been characterized as mediators of immune responses. Salmonid RBC are the major target cells of Piscineorthoreovirus (PRV), a virus associated with heart and skeletal muscle inflammation (HSMI) in farmed Atlantic salmon. The activation of antiviral response genesin RBChas previously been described in ex vivo and in vivo PRV-infection models, but not explored in the initial virus encounter phase. In the present study, mRNA transcriptome responses were explored in erythrocytes from individual fish, kept ex vivo, and exposed to purified PRV for 24 hours. The responses were compared to responses in macrophage-like salmon head kidney (SHK-1) and endothelial-like Atlantic salmon kidney (ASK) cells, none of which support PRV replication. The comparative analysis showed that the antiviral response to PRV was strongest in the SHK-1 cells, with a set of 80 significantly induced genes (≥ 2-fold upregulation). In RBC, 46 genes were significantly upregulated, while ASK cells were not significantly responsive. In particular, the transcriptome analysis of RBC revealed that PRV significantly induced interferon regulatory factor 1 (IRF1) and interferon-induced protein with tetratricopeptide repeats 5-like (IFIT9). However, several interferon-regulated antiviral genes which have previously been reported upregulated in PRV infected RBC in vivo (myxovirus resistance (Mx), interferon-stimulated gene 15 (ISG15), toll-like receptor 3 (TLR3)), were not significantly induced after 24h of virus stimulation. In contrast to RBC, these antiviral response genes were significantly upregulated in SHK-1. These results confirm that RBC are involved in the innate immune response to viruses, but with a delayed antiviral response compared to SHK-1. A notable difference is that interferon regulatory factor 1 (IRF-1) is the most strongly induced gene in RBC, but not among the significantly induced genes in SHK-1. Putative differences in the binding, recognition, and response to PRV, and any link to effects on the ability of PRV to replicate remains to be explored.

Keywords: antiviral responses, atlantic salmon, piscine orthoreovirus-1, red blood cells, RNA-seq

Procedia PDF Downloads 155
175 Preparation of Pegylated Interferon Alpha-2b with High Antiviral Activity Using Linear 20 KDa Polyethylene Glycol Derivative

Authors: Ehab El-Dabaa, Omnia Ali, Mohamed Abd El-Hady, Ahmed Osman

Abstract:

Recombinant human interferon alpha 2 (rhIFN-α2) is FDA approved for treatment of some viral and malignant diseases. Approved pegylated rhIFN-α2 drugs have highly improved pharmacokinetics, pharmacodynamics and therapeutic efficiency compared to native protein. In this work, we studied the pegylation of purified properly refolded rhIFN-α2b using linear 20kDa PEG-NHS (polyethylene glycol- N-hydroxysuccinimidyl ester) to prepare pegylated rhIFN-α2b with high stability and activity. The effect of different parameters like rhIFN-α2b final concentration, pH, rhIFN-α2b/PEG molar ratios and reaction time on the efficiency of pegylation (high percentage of monopegylated rhIFN-α2b) have been studied in small scale (100µl) pegylation reaction trials. Study of the percentages of different components of these reactions (mono, di, polypegylated rhIFN-α2b and unpegylated rhIFN-α2b) indicated that 2h is optimum time to complete the reaction. The pegylation efficiency increased at pH 8 (57.9%) by reducing the protein concentration to 1mg/ml and reducing the rhIFN-α2b/PEG ratio to 1:2. Using larger scale pegylation reaction (65% pegylation efficiency), ion exchange chromatography method has been optimized to prepare and purify the monopegylated rhIFN-α2b with high purity (96%). The prepared monopegylated rhIFN-α2b had apparent Mwt of approximately 65 kDa and high in vitro antiviral activity (2.1x10⁷ ± 0.8 x10⁷ IU/mg). Although it retained approximately 8.4 % of the antiviral activity of the unpegylated rhIFN-α2b, its activity is high compared to other pegylated rhIFN-α2 developed by using similar approach or higher molecular weight branched PEG.

Keywords: antiviral activity, rhIFN-α2b, pegylation, pegylation efficiency

Procedia PDF Downloads 148
174 Medicinal Plants: An Antiviral Depository with Complex Mode of Action

Authors: Daniel Todorov, Anton Hinkov, Petya Angelova, Kalina Shishkova, Venelin Tsvetkov, Stoyan Shishkov

Abstract:

Human herpes viruses (HHV) are ubiquitous pathogens with a pandemic spread across the globe. HHV type 1 is the main causative agent of cold sores and fever blisters around the mouth and on the face, whereas HHV type 2 is generally responsible for genital herpes outbreaks. The treatment of both viruses is more or less successful with antivirals from the nucleoside analogues group. Their wide application increasingly leads to the emergence of resistant mutants In the past, medicinal plants have been used to treat a number of infectious and non-infectious diseases. Their diversity and ability to produce the vast variety of secondary metabolites according to the characteristics of the environment give them the potential to help us in our warfare with viral infections. The variable chemical characteristics and complex composition is an advantage in the treatment of herpes since the emergence of resistant mutants is significantly complicated. The screening process is difficult due to the lack of standardization. That is why it is especially important to follow the mechanism of antiviral action of plants. On the one hand, it may be expected to interact with its compounds, resulting in enhanced antiviral effects, and the most appropriate environmental conditions can be chosen to maximize the amount of active secondary metabolites. During our study, we followed the activity of various plant extracts on the viral replication cycle as well as their effect on the extracellular virion. We obtained our results following the logical sequence of the experimental settings - determining the cytotoxicity of the extracts, evaluating the overall effect on viral replication and extracellular virion.During our research, we have screened a variety of plant extracts for their antiviral activity against both virus replication and the virion itself. We investigated the effect of the extracts on the individual stages of the viral replication cycle - viral adsorption, penetration and the effect on replication depending on the time of addition. If there are positive results in the later experiments, we had studied the activity over viral adsorption, penetration and the effect of replication according to the time of addition. Our results indicate that some of the extracts from the Lamium album have several targets. The first stages of the viral life cycle are most affected. Several of our active antiviral agents have shown an effect on extracellular virion and adsorption and penetration processes. Our research over the last decade has shown several curative antiviral plants - some of which are from the Lamiacea family. The rich set of active ingredients of the plants in this family makes them a good source of antiviral preparation.

Keywords: human herpes virus, antiviral activity, Lamium album, Nepeta nuda

Procedia PDF Downloads 132
173 Artemisia Species from Iran as Valuable Resources for Medicinal Uses

Authors: Mohammad Reza Naghavi, Farzad Alaeimoghadam, Hossein Ghafoori

Abstract:

Artemisia species, which are medically beneficial, are widespread in temperate regions of both Northern and Southern hemispheres among which Iran is located. About 35 species of Artemisia are indigenous in Iran among them some are widespread in all or most provinces, yet some are restricted to some specific regions. In this review paper, initially, GC-Mass results of some experiments done in different provinces of Iran are mentioned among them some compounds are common among species, some others are mostly restricted to other species; after that, medical advantages based on some researches on species of this genus are reviewed; different qualities such as anti-leishmania, anti-bacteria, antiviral as well as anti-proliferative could be mentioned.

Keywords: artemisia, GC-Mass analysis, medical advantage, antiviral

Procedia PDF Downloads 508
172 Cut-Off of CMV Cobas® Taqman® (CAP/CTM Roche®) for Introduction of Ganciclovir Pre-Emptive Therapy in Allogeneic Hematopoietic Stem Cell Transplant Recipients

Authors: B. B. S. Pereira, M. O. Souza, L. P. Zanetti, L. C. S. Oliveira, J. R. P. Moreno, M. P. Souza, V. R. Colturato, C. M. Machado

Abstract:

Background: The introduction of prophylactic or preemptive therapies has effectively decreased the CMV mortality rates after hematopoietic stem cell transplantation (HSCT). CMV antigenemia (pp65) or quantitative PCR are methods currently approved for CMV surveillance in pre-emptive strategies. Commercial assays are preferred as cut-off levels defined by in-house assays may vary among different protocols and in general show low reproducibility. Moreover, comparison of published data among different centers is only possible if international standards of quantification are included in the assays. Recently, the World Health Organization (WHO) established the first international standard for CMV detection. The real time PCR COBAS Ampliprep/ CobasTaqMan (CAP/CTM) (Roche®) was developed using the WHO standard for CMV quantification. However, the cut-off for the introduction of antiviral has not been determined yet. Methods: We conducted a retrospective study to determine: 1) the sensitivity and specificity of the new CMV CAP/CTM test in comparison with pp65 antigenemia to detect episodes of CMV infection/reactivation, and 2) the cut-off of viral load for introduction of ganciclovir (GCV). Pp65 antigenemia was performed and the corresponding plasma samples were stored at -20°C for further CMV detection by CAP/CTM. Comparison of tests was performed by kappa index. The appearance of positive antigenemia was considered the state variable to determine the cut-off of CMV viral load by ROC curve. Statistical analysis was performed using SPSS software version 19 (SPSS, Chicago, IL, USA.). Results: Thirty-eight patients were included and followed from August 2014 through May 2015. The antigenemia test detected 53 episodes of CMV infection in 34 patients (89.5%), while CAP/CTM detected 37 episodes in 33 patients (86.8%). AG and PCR results were compared in 431 samples and Kappa index was 30.9%. The median time for first AG detection was 42 (28-140) days, while CAP/CTM detected at a median of 7 days earlier (34 days, ranging from 7 to 110 days). The optimum cut-off value of CMV DNA was 34.25 IU/mL to detect positive antigenemia with 88.2% of sensibility, 100% of specificity and AUC of 0.91. This cut-off value is below the limit of detection and quantification of the equipment which is 56 IU/mL. According to CMV recurrence definition, 16 episodes of CMV recurrence were detected by antigenemia (47.1%) and 4 (12.1%) by CAP/CTM. The duration of viremia as detected by antigenemia was shorter (60.5% of the episodes lasted ≤ 7 days) in comparison to CAP/CTM (57.9% of the episodes lasting 15 days or more). This data suggests that the use of antigenemia to define the duration of GCV therapy might prompt early interruption of antiviral, which may favor CMV reactivation. The CAP/CTM PCR could possibly provide a safer information concerning the duration of GCV therapy. As prolonged treatment may increase the risk of toxicity, this hypothesis should be confirmed in prospective trials. Conclusions: Even though CAP/CTM by ROCHE showed great qualitative correlation with the antigenemia technique, the fully automated CAP/CTM did not demonstrate increased sensitivity. The cut-off value below the limit of detection and quantification may result in delayed introduction of pre-emptive therapy.

Keywords: antigenemia, CMV COBAS/TAQMAN, cytomegalovirus, antiviral cut-off

Procedia PDF Downloads 162
171 Teicoplanin Derivatives with Antiviral Activity: Synthesis and Biological Evaluation

Authors: Zsolt Szucs, Viktor Kelemen, Son Le Thai, Magdolna Csavas, Erzsebet Roth, Gyula Batta, Annelies Stevaert, Evelien Vanderlinden, Aniko Borbas, Lieve Naesens, Pal Herczegh

Abstract:

The approval of modern glycopeptide antibiotics such as dalbavancin and oritavancin which have excellent activity against Gram-positive bacteria, encouraged our research group to prepare semisynthetic compounds from several members of glycopeptides by various chemical methods. Derivatives from the aglycone of ristocetin, eremomycin, vancomycin and a pseudoaglycon of teicoplanin have been synthesized in a systematic manner. Interestingly, some of the aglycoristocetin derivatives displayed noteworthy anti-influenza activity. More recently our group has been focusing on the modifications of one of the pseudoaglycons of teicoplanin. The reaction of N-ethoxycarbonyl maleimide derivatives with the primary amino function, the copper-catalysed azide-alkyne click reaction and the sulfonylation of the N-terminus were utilized to obtain systematic series of compounds. All substituents provide a more lipophilic character to the new molecules compared to the parent antibiotics, which is known to be favourable for activity against resistant bacteria. Lipoglycopeptides are also known to have antiviral properties, which has been predominantly studied on HIV by others. The structure-activity relationship study of our compounds revealed the influence of a few structural elements on biological activity. In many cases, minimal changes in lipophilicity and structure produced great differences in efficacy and cytotoxicity. In vitro experiments showed that these compounds are not only active against glycopeptide resistant Gram-positive bacteria but in several cases they prevent the infection of cell cultures by different strains of influenza viruses. This is probably related to the inhibition of the viral entry into the host cell nucleus, of which the exact mechanism is unknown. In some instances, reasonably low concentrations were sufficient to observe this effect. Several derivatives were highly cytotoxic at the same time, but some of them displayed a good selectivity index. The antiviral properties of the compounds are not restricted to influenza viruses e.g., some of them showed good activity against Human Coronavirus 229E. This work could potentially lead to the development of antiviral drugs which possess the crucial structural motifs that are needed for antiviral activity, while missing those which contribute to the antibacterial effect.

Keywords: antiviral, glycopeptide, semisynthetic, teicoplanin

Procedia PDF Downloads 120
170 Production of Hydroxy Marilone C as a Bioactive Compound from Streptomyces badius

Authors: Osama H. Elsayed, Mohsen M. S. Asker, Mahmoud A. Swelim, Ibrahim H. Abbas, Aziza I. Attwa, Mohamed E. El Awady

Abstract:

Hydroxy marilone C is a bioactive metabolite was produced from the culture broth of Streptomyces badius isolated from Egyptian soil. hydroxy marilone C was purified and fractionated by silica gel column with a gradient mobile phase dicloromethane (DCM) : Methanol then Sephadex LH-20 column using methanol as a mobile phase. It was subjected to many instruments as Infrared (IR), nuclear magnetic resonance (NMR), Mass spectroscopy (MS) and UV spectroscopy to the elucidation of its structure. It was evaluated for antioxidant, cytotoxicity against human alveolar basal epithelial cell line (A-549) and human breast adenocarcinoma cell line (MCF-7) and antiviral activities; showed that the maximum antioxidant activity was 78.8 % at 3000 µg/ml after 90 min. and the IC50 value against DPPH radical found about 1500 µg/ml after 60 min. By Using MTT assay the effect of the pure compound on the proliferation of A-549 cells and MCF-7 cells were 443 µg/ml and 147.9 µg/ml, respectively. While for detection of antiviral activity using Madin-Darby canine kidney (MDCK) cells the maximum cytotoxicity was at 27.9% and IC50 was 128.1µg/ml. The maximum concentration required for protecting 50% of the virus-infected cells against H1N1 viral cytopathogenicity (EC50) was 33.25% for 80 µg/ml. This results indicated that the hydroxy marilone C has a potential antitumor and antiviral activities.

Keywords: hydroxy marilone C, production, bioactive compound, Streptomyces badius

Procedia PDF Downloads 232
169 Inhibition of Mixed Infection Caused by Human Immunodeficiency Virus and Herpes Virus by Fullerene Compound

Authors: Dmitry Nosik, Nickolay Nosik, Elli Kaplina, Olga Lobach, Marina Chataeva, Lev Rasnetsov

Abstract:

Background and aims: Human Immunodeficiency Virus (HIV) infection is very often associated with Herpes Simplex Virus (HSV) infection but HIV patients are treated with a cocktail of antiretroviral drugs which are toxic. The use of an antiviral drug which will be active against both viruses like ferrovir found in our previous studies is rather actual. Earlier we had shown that Fullerene poly-amino capronic acid (FPACA) was active in case of monoinfection of HIV-1 or HSV-1. The aim of the study was to analyze the efficiency of FPACA against mixed infection of HIV and HSV. Methods: The peripheral blood lymphocytes, CEM, MT-4 cells were simultaneously infected with HIV-1 and HSV-1. FPACA was added 1 hour before infection. Cells viability was detected by MTT assay, virus antigens detected by ELISA, syncytium formation detected by microscopy. The different multiplicity of HIV-1/HSV-1 ratio was used. Results: The double viral HIV-1/HSV-1 infection was more cytopathic comparing with monoinfections. In mixed infection by the HIV-1/HSV-1 concentration of HIV-1 antigens and syncytium formations increased by 1,7 to 2,3 times in different cells in comparison with the culture infected with HIV-1 alone. The concentration of HSV-1 increased by 1,5-1,7 times, respectively. Administration of FPACA (1 microg/ml) protected cells: HIV-1/HSV-1 (1:1) – 80,1%; HIV-1/HSV-1 (1:4) – 57,2%; HIV-1/HSV-1 (1:8) – 46,3 %; HIV-1/HSV-1 (1:16) – 17,0%. Virus’s antigen levels were also reduced. Syncytium formation was totally inhibited in all cases of mixed infection. Conclusion: FPACA showed antiviral activity in case of mixed viral infection induced by Human Immunodeficiency Virus and Herpes Simplex Virus. The effect of viral inhibition increased with the multiplicity of HIV-1 in the inoculum. The mechanism of FPACA action is connected with the blocking of the virus particles adsorption to the cells and it could be suggested that it can have an antiviral activity against some other viruses too. Now FPACA could be considered as a potential drug for treatment of HIV disease complicated with opportunistic herpes viral infection.

Keywords: antiviral drug, human immunodeficiency virus (hiv), herpes simplex virus (hsv), mixed viral infection

Procedia PDF Downloads 309
168 In vitro Evaluation of the Synergistic Antiviral Activity of Amantadine Coupled with Magnesium Lithospermate B against Enterovirus 71 Infection

Authors: Wen-Yu Lin, Yi-Ching Chung, Jhao-Ren Lin, Tzyy-Rong Jinn

Abstract:

It is well known that enterovirus 71(EV71) causes recurring outbreaks of hand, foot and mouth disease and encephalitis leading to complications or death in young children. And, several enterovirus 71 (EV71) of hand foot and mouth disease (HFMD) with high mortalities occurred in Asia country, such as Hong Kung (1985), Malaysia (1997), Taiwan (1998) and China (2008) that EV71 results in severe neurological complications and sudden death in infants and young children. However, there are still no effective drugs and vaccines to reduce and inhibit EV71 infection. Therefore, the development of specific and effective antiviral strategies against EV71 has become an urgent issue for the protection of children from the hazards of the HFMD. As reported, amantadine is effective in prophylaxis and treatment of the EV71 infections. Thus, the aim of this study was to further evaluate the synergistic antiviral activity of amantadine coupled with magnesium lithospermate B (MLB) against enterovirus 71 infection. In a preliminary test, it is shown that the infected RD cells were treated with amantadine after virus absorption, at concentrations of 3 and 5µM of amantadine suppressed EV71-induced CPE to 13% and 23%, respectively at MOI of 3. Alternatively, at concentrations of 5µg/ml of MLB combined with 3 and 5 µM of amantadine apparently suppressed EV71-induced CPE to 45% and 63%, respectively at MOI of 3. Thus, amantadine coupled with MLB may have the potential for further study to development as the chemopreventive reagents against EV71 infection.

Keywords: amantadine, Enterovirus 71, magnesium lithospermate B, RD cells, synergistic effects

Procedia PDF Downloads 216
167 Effect of Submaximal Eccentric versus Maximal Isometric Contraction on Delayed Onset Muscle Soreness

Authors: Mohamed M. Ragab, Neveen A. Abdel Raoof, Reham H. Diab

Abstract:

Background: Delayed onset muscle soreness (DOMS) is the most common symptom when ordinary individuals and athletes are exposed to unaccustomed physical activity, especially eccentric contraction which impairs athletic performance, ordinary people work ability and physical functioning. A multitude of methods have been investigated to reduce DOMS. One of the valuable method to control DOMS is repeated bout effect (RBE) as a prophylactic method. Purpose: To compare the repeated bout effect of submaximal eccentric contraction versus maximal isometric contraction on induced DOMS. Methods: Sixty normal male volunteers were assigned randomly into three groups of equal number: Group (A) “first study group”: 20 subjects received submaximal eccentric contraction on non-dominant elbow flexors as prophylactic exercise. Group (B) “second study group”: 20 subjects received maximal isometric contraction on non-dominant elbow flexors as prophylactic exercise. Group (C) “control group”: 20 subjects did not receive any prophylactic exercise. Maximal isometric contraction peak torque of elbow flexors and patient related elbow evaluation (PREE) scale were measured for each subject 3 times before, immediately after and 48 hours after induction of DOMS. Results: Post-hoc test for maximal isometric peak torque and PREE scale immediately and 48 hours after induction of DOMS revealed that group (A) and group (B) resulted in significant decrease in maximal isometric strength loss and elbow pain and disability rather than control group (C), but submaximal eccentric group (A) was more effective than maximal isometric group (B) as it showed more rapid recovery of functional strength and less degrees of elbow pain and disability. Conclusion: Both submaximal eccentric contraction and maximal isometric contraction were effective in prevention of DOMS but submaximal eccentric contraction had the greatest protective effect.

Keywords: delayed onset muscle soreness, maximal isometric peak torque, patient related elbow evaluation scale, repeated bout effect

Procedia PDF Downloads 327
166 Prevention of COVID-19 Using Herbs and Natural Products

Authors: Nada Alqadri, Omaima Nasir

Abstract:

Natural compounds are an important source of potential inhibitors; they have a lot of pharma potential with less adverse effects. The effective antiviral activities of natural products have been proved in different studies. The outbreak of COVID-19 in Wuhan, Hubei, in December 2019, coronavirus has had a significant impact on people's health and lives. Based on previous studies, natural products can be introduced as preventive and therapeutic agents in the fight against COVID-19; considering that no food or supplement has been authorized to prevent COVID-19, individuals continue to search for and consume specific herbs, foods, and commercial supplements for this purpose. This study will be aimed to estimate the uses of herbal and natural products during the COVID-19 infection to determine their usage reasons and evaluate their potential side effects. An online cross-sectional survey of different participants will be conducted and will be a focus on respondents’ chronic disease histories, socio-dmographic characteristics, and frequency and trends of using these products. Descriptive and univariate analyses will be performed to determine prevalence and associations between various products used and respondents’ socio-demographic data. Relationships will be tested using Pearson’s chi-square test or an exact probability test. Our main findings will give evidence of beneficial uses of natural products and herbal medicine as prophylactic and will be a vigorous approach to stop or at least slow down COVID-19 infection and transmission. This will be of great interest of public health, and the results of our study will lend health officials better control on the current pandemic.

Keywords: COVID-19, herbs, natural products, saudi arabia

Procedia PDF Downloads 174
165 Prophylactic Effect of Dietary Garlic (Allium sativum) Inclusion in Feed of Commercial Broilers with Coccidiosis Raised at the Experimental Animal Unit of the Department of Veterinary Medicine, University of Ibadan, Oyo State, Nigeria

Authors: Ogunlesi Olufunso, John Ogunsola, Omolade Oladele, Benjamin Emikpe

Abstract:

Context: Coccidiosis is a parasitic disease that affects poultry production, leading to economic losses. Garlic is known for medicinal properties and has been used as a natural remedy for various diseases. This study aims to investigate the prophylactic effect of garlic inclusion in the feed of commercial broilers with coccidiosis. Research Aim: The aim of this study is to determine the possible effect of garlic meal inclusion in poultry feed on the body weight gain of commercial broilers and to investigate it's therapeutic effect on broilers with coccidiosis. Methodology: The study conducted a case-control study for eight weeks with One hundred Arbor acre commercial broilers separated into five (5) groups from day-old, where 6,000 Eimeria oocysts were orally inoculated into each broiler in the different groups. Feed intake, body weight gain, feed conversion ratio, oocyt shedding rate, histopathology and erythrocyte indices were assessed. Findings: The inclusion of garlic meal in the broilers' diet resulted in an improved feed conversion ratio, decreased oocyst counts, reduced diarrhoeic fecal spots, decreased susceptibility to coccidial infection, and increased packed cell volume (PCV). Theoretical Importance: This study contributes to the understanding of the prophylactic effect of garlic supplementation, including its antiparasitic properties on commercial broilers with coccidiosis. It highlights the potential use of non-conventional feed additives or ayurvedic herb and spices in the treatment of poultry diseases. Data Collection and Analysis Procedures: The study collected data on feed intake, body weight gain, oocyst shedding rate, histopathological observations, and erythrocyte indices. Data were analyzed using Analysis of Variance and Duncan's Multiple range Test. Questions Addressed: The study addressed the possible effect of garlic meal inclusion in poultry feed on the body weight gain of broilers and its therapeutic effect on broilers with coccidiosis. Conclusion: The study concludes that garlic inclusion in the feed of broilers has a prophylactic effect, including antiparasitic properties, resulting in improved feed conversion ratio, reduced oocyst counts and increased PCV.

Keywords: broilers, eimeria spp, garlic, Ibadan

Procedia PDF Downloads 42
164 Effect of Prophylactic Oxytocin Therapy on Duration of Retained Fetal Membrane (RFM) in Periparturient Dairy Cows

Authors: Hamid Ghasemzadeh- Nava, Maziar Kaveh Baghbadorani, Amin Tamadon

Abstract:

Considering response of uterus to ecbolic effect of oxytocin near the time of parturition, this study was done for investigating the effect of prophylactic administration of this hormone on duration of fetal membrane retention, time interval to first detectable estrus, time interval to first service, and conception rate at first service in cases of both normal parturition and dystocia. For this reason cows with (n=18) and without (n=18) dystocia assigned randomly to treatment (n=12) or control (n=6) groups and received intramuscular injection of 100 IU of oxytocin or 10 mL of normal saline respectively. Further observations and investigations indicate that duration of fetal retention is significantly shorter in treatment group cows compared to control groups, regardless of having dystocia (P=0.002) or normal spontaneous calving (P=0.001). The same trend exists for conception rate at first service in which cows in treatment groups had significantly higher conception rate (CR) in comparison to cows in control groups with (P=0.0003) or without dystocia (P=0.017). The time interval to first detected heat and first service didn’t show any difference between groups.

Keywords: conception rate, oxytocin, RFM, time to first service

Procedia PDF Downloads 405
163 Prophylactic and Curative Effect of Selenium on Infertility Induced by Formaldehyde Using Male Albino Mice

Authors: Suhera M. Aburawi, Habiba A. El Jaafari, Soad A. Treesh, Abdulssalam M. Abu-Aisha, Faisal S. Alwaer, Reda A. Eltubuly, Medeha Elghedamsi

Abstract:

Introduction: Infertility is a source of psychological, and sometimes social, stress on parents who desire to have children. Formaldehyde is used chiefly as disinfectant, preservative and in the chemical synthesis. The medical uses of formaldehyde are limited, but focused especially on laboratory use. Selenium is an essential trace mineral element for human; it is essential for sperm function and male fertility. Selenium deficiency has been linked to reproductive problems in animals. Objectives: To investigate the prophylactic and curative effect of selenium on male infertility induced by formaldehyde using male albino mice. Method: Forty male albino mice were used, weight 25-30 gm. Five groups of male mice (n=8) were used. Group 1 was daily administered water for injection (5ml/kg) for five days, group 2 was daily administered selenium (100 μg/kg) for five days, group 3 was daily administered formaldehyde (30mg/kg) for five days, group 4 (prophylaxis) was daily administered a combination of formaldehyde and selenium for five days, while group 5 (curative) was daily administered formaldehyde for five days followed by daily administration of selenium for the next five days. Intraperitoneal administration was adopted. At the end of the administration, seminal fluid was collected from vas deferens. Sperm count, morphology and motility were scored; histopathological screening of genital system was carried out. SPSS was applied for comparing groups. Results and conclusion: It was found that formaldehyde toxicity did not change the sperm count and percentage of motile sperm; unhealthy sperm was increased, while healthy sperm was decreased. Formaldehyde produces degeneration/damage to the male mice genital system. Selenium alone produce an increase in sperm count, volume of seminal fluid and the percentage of motile sperm. Selenium has prophylactic and curative effects against formaldehyde-induce genital system toxicity. Future work is recommended to find out if selenium protective effect is through antioxidant or other mechanisms.

Keywords: infertility, formaldehyde, selenium, male mice

Procedia PDF Downloads 398
162 In Silico Study of Antiviral Drugs Against Three Important Proteins of Sars-Cov-2 Using Molecular Docking Method

Authors: Alireza Jalalvand, Maryam Saleh, Somayeh Behjat Khatouni, Zahra Bahri Najafi, Foroozan Fatahinia, Narges Ismailzadeh, Behrokh Farahmand

Abstract:

Object: In the last two decades, the recent outbreak of Coronavirus (SARS-CoV-2) imposed a global pandemic in the world. Despite the increasing prevalence of the disease, there are no effective drugs to treat it. A suitable and rapid way to afford an effective drug and treat the global pandemic is a computational drug study. This study used molecular docking methods to examine the potential inhibition of over 50 antiviral drugs against three fundamental proteins of SARS-CoV-2. METHODS: Through a literature review, three important proteins (a key protease, RNA-dependent RNA polymerase (RdRp), and spike) were selected as drug targets. Three-dimensional (3D) structures of protease, spike, and RdRP proteins were obtained from the Protein Data Bank. Protein had minimal energy. Over 50 antiviral drugs were considered candidates for protein inhibition and their 3D structures were obtained from drug banks. The Autodock 4.2 software was used to define the molecular docking settings and run the algorithm. RESULTS: Five drugs, including indinavir, lopinavir, saquinavir, nelfinavir, and remdesivir, exhibited the highest inhibitory potency against all three proteins based on the binding energies and drug binding positions deduced from docking and hydrogen-bonding analysis. Conclusions: According to the results, among the drugs mentioned, saquinavir and lopinavir showed the highest inhibitory potency against all three proteins compared to other drugs. It may enter laboratory phase studies as a dual-drug treatment to inhibit SARS-CoV-2.

Keywords: covid-19, drug repositioning, molecular docking, lopinavir, saquinavir

Procedia PDF Downloads 56
161 The Association between Antimicrobial Usage and Biosecurity Practices on Commercial Chicken Farms in Bangladesh

Authors: Tasneem Imam, Justine S. Gibson, Mohammad Foysal, Shetu B. Das, Rashed Mahmud, Suman D. Gupta, Ahasanul Hoque, Guillaume Fournie, Joerg Henning

Abstract:

Commercial chicken production is an import livestock industry in Bangladesh. Antimicrobials are commonly used to control and prevent infectious diseases. It was hypothesized that inadequate biosecurity practices might promote antimicrobial usage on commercial chicken farms. A cross-sectional study was carried out to evaluate antimicrobial usage and farm biosecurity practices implemented on 57 layer and 83 broiler farms in eight sub-districts of the Chattogram district in Bangladesh. A questionnaire was used to collect data on antimicrobial usage and biosecurity practices on these farms. A causal framework was used to guide the development of a multi-level mixed-effects logistic regression analysis to evaluate the total and direct effects of practiced biosecurity management on prophylactic and therapeutic administration of antimicrobials. A total of 24 antimicrobials were administered in the current production cycle at the time of the survey. The most administered antimicrobials on layer farms were ciprofloxacin (37.0% of farms), amoxicillin (33.3%), and tiamulin (31.5%); however, on broiler farms, colistin (56.6% of farms), doxycycline (50.6%), and neomycin (38.6%) were most used. Only 15.3% of commercial farmers used antimicrobials entirely for therapeutic purposes, whereas 84.7% administered antimicrobials prophylactically. Inadequate biosecurity practices were more common among commercial broiler farmers compared to layer farmers. For example, only 2.4% of broiler farmers used footbaths before entering sheds compared to 22.2% of the layer farmers (p < 0.001). Farms that used antimicrobials only for therapeutic purposes (vs prophylactic) implemented more frequently adequate disease control measures, such as separating sick birds from healthy birds. This research highlighted that the prophylactic application of antimicrobials is often conducted to substitute poor biosecurity practices on commercial chicken farms. Awareness programs for farmers are crucial to inform them about the risk associated with antimicrobial usage and to highlight the economic benefits of implementing cost-effective biosecurity measures to control infectious poultry diseases.

Keywords: antimicrobial, biosecurity, broiler, layer

Procedia PDF Downloads 128
160 Influence of Cyperus Rotundus Active Principles Inhibit Viral Multiplication and Stimulate Immune System in Indian White Shrimp Fenneropenaeus Indicus against White Spot Syndrome Virus Infection

Authors: Thavasimuthu Citarasu, Mariavincent Michaelbabu, Vikram Vakharia

Abstract:

The rhizome of Java grass, Cyperus rotundus was extracted different organic polar and non-polar solvents and performed the in vitro antiviral and immunostimulant activities against White Spot Syndrome Virus (WSSV) and Vibrio harveyi respectively. Based on the initial screening the ethyl acetate extract of C. rotundus was strong activities and further it was purified through silica column chromatography and the fractions were screened again for antiviral and immunostimulant activity. Among the different fractions screened against the WSSV and V. harveyi, the fractions, F-III to FV had strong activities. In order to study the in vivo influence of C. rotundus, the fractions (F-III to FV) were pooled and delivered to the F. indicus through artificial feed for 30 days. After the feeding trail the experimental and control diet fed F. indicus were challenged with virulent WSSV and studied the survival, molecular diagnosis, biochemical, haematological and immunological parameters. Surprisingly, the pooled fractions (F-III to FV) incorporated diets helped to significantly (P < 0.01) suppressed viral multiplication, showed significant (P < 0.01) differences in protein and glucose levels, improved total haemocyte count (THC), coagulase activity, significantly increased (P < =0.001) prophenol oxidase and intracellular superoxide anion production compared to the control shrimps. Based on the results, C. rotundus extracts effectively suppressed WSSV multiplication and improve the immune system in F. indicus against WSSV infection and this knowledge will helps to develop novel drugs from C. rotundus against WSSV.

Keywords: antiviral drugs, cyperus rotundus, fenneropenaeus indicus, WSSV

Procedia PDF Downloads 429
159 In-Situ Reactive Growth of Silver Nanoparticles on Cotton Textile for Antiviral and Electromagnetic Shielding Applications

Authors: Hamed Mohammadi Mofarah, Mutalifu Abulikemu, Ghassan E. Jabbour

Abstract:

Personal protective equipment (PPE) is finding increasing interest in incorporating silver nanoparticles (NPs) for various applications including microbial disinfection and shielding against electromagnetic waves. In this venue, we present an in situ reactive coating approach where silver nanoparticles are self-assembled on the surface of cotton yarn. The impacts of a variety of experimental parameters on the average size of the synthesized silver NPs were investigated. These include vacuum conditions, the concentration of the silver salt solution and reducer, temperature, and curing time. Silver NPs with an average size ranging from 10 to 50 nanometers were self-assembled as a result of careful regulation of such reaction conditions. The disinfection efficacy against the COVID surrogate virus of the functional textile reached a rate of 99.99%. On the other hand, the silver NPs decorated textile demonstrated an electromagnetic shielding ranging from 31 dB to 45 dB were achieved for the frequency range 8.2-12.4 GHz.

Keywords: antiviral, COVID, electromagnetic shielding, in-situ reactive coating, SARS CoV 2, silver nanoparticles, smart textile

Procedia PDF Downloads 56