Search results for: health data
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 30679

Search results for: health data

27199 Vision-Based Daily Routine Recognition for Healthcare with Transfer Learning

Authors: Bruce X. B. Yu, Yan Liu, Keith C. C. Chan

Abstract:

We propose to record Activities of Daily Living (ADLs) of elderly people using a vision-based system so as to provide better assistive and personalization technologies. Current ADL-related research is based on data collected with help from non-elderly subjects in laboratory environments and the activities performed are predetermined for the sole purpose of data collection. To obtain more realistic datasets for the application, we recorded ADLs for the elderly with data collected from real-world environment involving real elderly subjects. Motivated by the need to collect data for more effective research related to elderly care, we chose to collect data in the room of an elderly person. Specifically, we installed Kinect, a vision-based sensor on the ceiling, to capture the activities that the elderly subject performs in the morning every day. Based on the data, we identified 12 morning activities that the elderly person performs daily. To recognize these activities, we created a HARELCARE framework to investigate into the effectiveness of existing Human Activity Recognition (HAR) algorithms and propose the use of a transfer learning algorithm for HAR. We compared the performance, in terms of accuracy, and training progress. Although the collected dataset is relatively small, the proposed algorithm has a good potential to be applied to all daily routine activities for healthcare purposes such as evidence-based diagnosis and treatment.

Keywords: daily activity recognition, healthcare, IoT sensors, transfer learning

Procedia PDF Downloads 135
27198 Health Psychology Intervention: Identifying Early Symptoms in Neurological Disorders

Authors: Simon B. N. Thompson

Abstract:

Early indicator of neurological disease has been proposed by the expanded Thompson Cortisol Hypothesis which suggests that yawning is linked to rises in cortisol levels. Cortisol is essential to the regulation of the immune system and pathological yawning is a symptom of multiple sclerosis (MS). Electromyography activity (EMG) in the jaw muscles typically rises when the muscles are moved – extended or flexed; and yawning has been shown to be highly correlated with cortisol levels in healthy people. It is likely that these elevated cortisol levels are also seen in people with MS. The possible link between EMG in the jaw muscles and rises in saliva cortisol levels during yawning were investigated in a randomized controlled trial of 60 volunteers aged 18-69 years who were exposed to conditions that were designed to elicit the yawning response. Saliva samples were collected at the start and after yawning, or at the end of the presentation of yawning-provoking stimuli, in the absence of a yawn, and EMG data was additionally collected during rest and yawning phases. Hospital Anxiety and Depression Scale, Yawning Susceptibility Scale, General Health Questionnaire, demographic, and health details were collected and the following exclusion criteria were adopted: chronic fatigue, diabetes, fibromyalgia, heart condition, high blood pressure, hormone replacement therapy, multiple sclerosis, and stroke. Significant differences were found between the saliva cortisol samples for the yawners, t (23) = -4.263, p = 0.000, as compared with the non-yawners between rest and post-stimuli, which was non-significant. There were also significant differences between yawners and non-yawners for the EMG potentials with the yawners having higher rest and post-yawning potentials. Significant evidence was found to support the Thompson Cortisol Hypothesis suggesting that rises in cortisol levels are associated with the yawning response. Further research is underway to explore the use of cortisol as a potential diagnostic tool as an assist to the early diagnosis of symptoms related to neurological disorders. Bournemouth University Research & Ethics approval granted: JC28/1/13-KA6/9/13. Professional code of conduct, confidentiality, and safety issues have been addressed and approved in the Ethics submission. Trials identification number: ISRCTN61942768. http://www.controlled-trials.com/isrctn/

Keywords: cortisol, electromyography, neurology, yawning

Procedia PDF Downloads 591
27197 Magnitude and Factors of Risky Sexual Practice among Day Laborers in Ethiopia: A Systematic Review and Meta-Analysis, 2023

Authors: Kalkidan Worku, Eniyew Tegegne, Menichil Amsalu, Samuel Derbie Habtegiorgis

Abstract:

Introduction: Because of the seasonal nature of the work, day laborers are exposed to risky sexual practices. Since the majority of them are living far away from their birthplace and family, they engage in unplanned and multiple sexual practices. These unplanned and unprotected sexual experiences are a risk for different types of sexual-related health crises. This study aimed to assess the pooled prevalence of risky sexual practices and its determinants among day laborers in Ethiopia. Methods: Online databases, including PubMed, Google Scholar, Science Direct, African Journal of Online, Academia Edu, Semantic Scholar, and university repository sites, were searched from database inception until March 2023. PRISMA 2020 guideline was used to conduct the review. Among 851 extracted studies, ten articles were retained for the final quantitative analysis. To identify the source of heterogeneity, a sub-group analysis and I² test were performed. Publication bias was assessed by using a funnel plot and the Egger and Beg test. The pooled prevalence of risky sexual practices was calculated. Besides, the association between determinant factors and risky sexual practice was determined using a pooled odds ratio (OR) with a 95% confidence interval. Result: The pooled prevalence of risky sexual practices among day laborers was 46.00% (95% CI: 32.96, 59.03). Being single (OR: 2.49; 95% CI: 1.29 to 4.83), substance use (OR: 1.79; 95% CI: 1.40 to 2.29), alcohol intake (OR: 4.19; 95% CI: 2.19 to 8.04), watching pornographic (OR: 5.49; 95% CI: 2.99 to 10.09), discussion about SRH (OR: 4.21; 95% CI: 1.34 to 13.21), visiting night clubs (OR: 2.86 95% CI: 1.79 to 4.57) and risk perception (OR: 0.37 95% CI: 0.20 to 0.70) were the possible factors for risky sexual practice of day laborers in Ethiopia. Conclusions: A large proportion of day laborers engaged in risky sexual practices. Interventions targeting creating awareness of sexual and reproductive health for day laborers should be implemented. Continuous peer education on sexual health should be given to day laborers. Sexual and reproductive health services should be accessible in their workplaces to maximize condom utilization and to facilitate sexual health education for all day laborers.

Keywords: day laborers, sexual health, risky sexual practice, unsafe sex, multiple sexual partners

Procedia PDF Downloads 85
27196 A Refrigerated Condition for the Storage of Glucose Test Strips at Health Promoting Hospitals: An Implication for Hospitals with Limited Air Conditioners

Authors: Wanutchaya Duanginta, Napaporn Apiratmateekul, Tippawan Sangkaew, Sunaree Wekinhirun, Kunchit Kongros, Wanvisa Treebuphachatsakul

Abstract:

Thailand has a tropical climate with an average outdoor ambient air temperature of over 30°C, which can exceed manufacturer recommendations for the storage of glucose test strips. This study monitored temperature and humidity at actual sites of five sub-district health promoting hospitals (HPH) in Phitsanulok Province for the storage of glucose test strips in refrigerated conditions. Five calibrated data loggers were placed at the actual sites for glucose test strip storage at five HPHs for 8 weeks between April and June. For the stress test, two lot numbers of glucose test strips, each with two glucose meters, were kept in a plastic box with desiccants and placed in a refrigerator with the temperature calibrated to 4°C and at room temperature (RT). Temperature and humidity in the refrigerator and at RT were measured every hour for 30 days. The mean temperature for storing test strips at the five HPHs ranged from 29°C to 33°C, and three of the five HPHs (60%) had a mean temperature above 30°C. The refrigerator temperatures were 3.8 ± 2.0°C (2.0°C to 6.5°C), and relative humidity was 51 ± 2% (42 to 54%). The maximum of blood glucose testing by glucose meters when the test strips were stored in a refrigerator were not significantly different (p > 0.05) from unstressed test strips for both glucose meters using amperometry-GDH-PQQ and amperometry-GDH-FAD principles. Opening the test strip vial daily resulted in higher variation than when refrigerated after a single-use. However, the variations were still within an acceptable range. This study concludes that glucose tested strips can be stored in plastic boxes in a refrigerator if it is well-controlled for temperature and humidity. Storage of glucose-tested strips in the refrigerator during hot and humid weather may be useful for HPHs with limited air conditioners.

Keywords: environmental stressed test, thermal stressed test, quality control, point-of-care testing

Procedia PDF Downloads 201
27195 Design and Implementation of Security Middleware for Data Warehouse Signature, Framework

Authors: Mayada Al Meghari

Abstract:

Recently, grid middlewares have provided large integrated use of network resources as the shared data and the CPU to become a virtual supercomputer. In this work, we present the design and implementation of the middleware for Data Warehouse Signature, DWS Framework. The aim of using the middleware in our DWS framework is to achieve the high performance by the parallel computing. This middleware is developed on Alchemi.Net framework to increase the security among the network nodes through the authentication and group-key distribution model. This model achieves the key security and prevents any intermediate attacks in the middleware. This paper presents the flow process structures of the middleware design. In addition, the paper ensures the implementation of security for DWS middleware enhancement with the authentication and group-key distribution model. Finally, from the analysis of other middleware approaches, the developed middleware of DWS framework is the optimal solution of a complete covering of security issues.

Keywords: middleware, parallel computing, data warehouse, security, group-key, high performance

Procedia PDF Downloads 122
27194 The Perceptions of Patients with Osteoarthritis at a Public Community Rehabilitation Centre in the Cape Metropole for Using Digital Technology in Rehabilitation

Authors: Gabriela Prins, Quinette Louw, Dawn Ernstzen

Abstract:

Background: Access to rehabilitation services is a major challenge globally, especially in low-and-middle income countries (LMICs) where resources and infrastructure are extremely limited. Telerehabilitation (TR) has emerged in recent decades as a highly promising method to dramatically expand accessibility to rehabilitation services globally. TR provides rehabilitation care remotely using communication technologies such as video conferencing, smartphones, and internet-connected devices. This boosts accessibility to underprivileged regions and allows for greater flexibility for patients. Despite this, TR is hindered by several factors, including limited technological resources, high costs, lack of digital access, and the unavailability of healthcare systems, which are major barriers to widespread adoption among LMIC patients. These barriers have collectively hindered the potential implementation and adoption of TR services in LMICs healthcare settings. Adoption of TR will also require the buy-in of end users and limited information is known on the perspectives of the SA population. Aim: The study aimed to understand patients' perspectives regarding the use of digital technology as part of their OA rehabilitation at a public community healthcare centre in the Cape Metropole Area. Methods: A qualitative descriptive study design was used on 10 OA patients from a public community rehabilitation centre in South Africa. Data collection included semi-structured interviews and patient-reported outcome measures (PSFS, ASES-8, and EuroQol EQ-5D-5L) on functioning and quality of life. Transcribed interview data were coded in Atlas.ti. 22.2 and analyzed using thematic analysis. The results were narratively documented. Results: Four themes arose from the interviews. The themes were Telerehabilitation awareness (Use of Digital Technology Information Sources and Prior Experience with Technology /TR), Telerehabilitation Benefits (Access to healthcare providers, Access to educational information, Convenience, Time and Resource Efficiency and Facilitating Family Involvement), Telerehabilitation Implementation Considerations (Openness towards TR Implementation, Learning about TR and Technology, Therapeutic relationship, and Privacy) and Future use of Telerehabilitation (Personal Preference and TR for the next generation). The ten participants demonstrated limited awareness and exposure to TR, as well as minimal digital literacy and skills. Skepticism was shown when comparing the effectiveness of TR to in-person rehabilitation and valued physical interactions with health professionals. However, some recognized potential benefits of TR for accessibility, convenience, family involvement and improving community health in the long term. Willingness existed to try TR with sufficient training. Conclusion: With targeted efforts addressing identified barriers around awareness, technological literacy, clinician readiness and resource availability, perspectives on TR may shift positively from uncertainty towards endorsement of this expanding approach for simpler rehabilitation access in LMICs.

Keywords: digital technology, osteoarthritis, primary health care, telerehabilitation

Procedia PDF Downloads 82
27193 Prevalence of the Double Burden of Malnutrition in Women of Childbearing Age in Morocco: Coexistence of Iron Deficiency Anemia and Overweight

Authors: Fall Abdourahmane, Lazrak Meryem, El Hsaini Houda, El Ammari Laila, Gamih Hasnae, Yahyane Abdelhakim, Benjouad Abdelaziz, Aguenaou Hassan, El Kari Khalid

Abstract:

Introduction: The double burden of malnutrition (DBM), characterized by the coexistence of undernutrition and overnutrition, is a significant health challenge, particularly in low- and middle-income countries. In Morocco, 61.3% of women of reproductive age (WRA) are overweight or obese, including 30.4% who were obese, while 34.4% were anaemic, and 49.7% have iron deficiency anaemia. Objective: This study aims to determine the prevalence of DBM at the individual level among Moroccan WRA, defined by the coexistence of iron deficiency anaemia and overweight/obesity. Methods: a cross-sectional national survey was conducted among a representative sample of 2090 Moroccan WRA. Data collected included socio-economic parameters, anthropometric measurements, and blood samples. Haemoglobin levels were measured photometrically using Hemocue, while ferritin and CRP were assessed through immunoturbudimetry. Results: The prevalence of overweight/obesity, iron deficiency, anaemia and iron deficiency anaemia among WRA in Morocco were 60.2%, 30.6%, 34.4% and 50.0% respectively. The coexistence of overweight/obesity with anaemia and iron deficiency was observed in 19.2% and 16.3% of women, respectively. Among overweight/obese women, 32.5% were anaemic, 28.4% were iron deficient, and 47.6% had iron deficiency anaemia. the prevalence of DBM was higher in urban areas compared to rural settings. Conclusion: The coexistence of undernutrition and overnutrition among WRA highlights the urgent need for integrated public health interventions addressing both anaemia and obesity simultaneously. Tailored strategies should consider the specific socio-economic and geographical contexts to effectively combat this dual burden.

Keywords: the double burden of malnutrition, iron deficiency anaemia, overweight, obesity

Procedia PDF Downloads 43
27192 Algorithm for Modelling Land Surface Temperature and Land Cover Classification and Their Interaction

Authors: Jigg Pelayo, Ricardo Villar, Einstine Opiso

Abstract:

The rampant and unintended spread of urban areas resulted in increasing artificial component features in the land cover types of the countryside and bringing forth the urban heat island (UHI). This paved the way to wide range of negative influences on the human health and environment which commonly relates to air pollution, drought, higher energy demand, and water shortage. Land cover type also plays a relevant role in the process of understanding the interaction between ground surfaces with the local temperature. At the moment, the depiction of the land surface temperature (LST) at city/municipality scale particularly in certain areas of Misamis Oriental, Philippines is inadequate as support to efficient mitigations and adaptations of the surface urban heat island (SUHI). Thus, this study purposely attempts to provide application on the Landsat 8 satellite data and low density Light Detection and Ranging (LiDAR) products in mapping out quality automated LST model and crop-level land cover classification in a local scale, through theoretical and algorithm based approach utilizing the principle of data analysis subjected to multi-dimensional image object model. The paper also aims to explore the relationship between the derived LST and land cover classification. The results of the presented model showed the ability of comprehensive data analysis and GIS functionalities with the integration of object-based image analysis (OBIA) approach on automating complex maps production processes with considerable efficiency and high accuracy. The findings may potentially lead to expanded investigation of temporal dynamics of land surface UHI. It is worthwhile to note that the environmental significance of these interactions through combined application of remote sensing, geographic information tools, mathematical morphology and data analysis can provide microclimate perception, awareness and improved decision-making for land use planning and characterization at local and neighborhood scale. As a result, it can aid in facilitating problem identification, support mitigations and adaptations more efficiently.

Keywords: LiDAR, OBIA, remote sensing, local scale

Procedia PDF Downloads 286
27191 Integrating Music on Construction Sites: Key Benefits and Cautions: A Literature Perspective

Authors: Oluwatayomi Daniel Fadumo, Chinyere Celestina Esimone

Abstract:

The construction industry, as a massive human capital-related sector, requires an always motivated workforce. The inability to maintain this state has been found to hamper productivity which ultimately leads to poor project delivery, infrastructural development decline, and low morale among citizens. The need to develop an approach to keep this set of people inspired before, during, and after work becomes a necessity; this paper aims to evaluate the key benefits and cautions in integrating music on construction sites in Nigeria to improve effective project delivery. In attaining this, the study identified the advantages of music on construction sites, evaluated the key considerations in introducing music on construction sites, and recommended measures for the effective integration of music on construction sites in Nigeria. The study is a descriptive research through the use of secondary data gleaned from relevant literature, journals, and research sites. The study concluded that different forms of music genres can be implemented ranging from Pop music, rock, metal, and classical music. Introducing music has the advantage of industrial branding, improving workers` morale, setting the pace for working, helping in information retention, and improving mental health and happiness. The key consideration, however, is to provide the right volume and music that doesn’t pose health and safety challenges. The study finally recommended that for effective integration of music on construction sites in Nigeria, policies should be drafted regulating its use, specific radio customized for the site be introduced and that research-based music, proven to have previously helped, should be given to a group of workers.

Keywords: music, construction sites, workers, construction industry, construction management practice

Procedia PDF Downloads 59
27190 Sentiment Classification of Documents

Authors: Swarnadip Ghosh

Abstract:

Sentiment Analysis is the process of detecting the contextual polarity of text. In other words, it determines whether a piece of writing is positive, negative or neutral.Sentiment analysis of documents holds great importance in today's world, when numerous information is stored in databases and in the world wide web. An efficient algorithm to illicit such information, would be beneficial for social, economic as well as medical purposes. In this project, we have developed an algorithm to classify a document into positive or negative. Using our algorithm, we obtained a feature set from the data, and classified the documents based on this feature set. It is important to note that, in the classification, we have not used the independence assumption, which is considered by many procedures like the Naive Bayes. This makes the algorithm more general in scope. Moreover, because of the sparsity and high dimensionality of such data, we did not use empirical distribution for estimation, but developed a method by finding degree of close clustering of the data points. We have applied our algorithm on a movie review data set obtained from IMDb and obtained satisfactory results.

Keywords: sentiment, Run's Test, cross validation, higher dimensional pmf estimation

Procedia PDF Downloads 407
27189 Corporate Governance and Bank Performance: A Study of Selected Deposit Money Banks in Nigeria

Authors: Ayodele Ajayi, John Ajayi

Abstract:

This paper investigates the effect of corporate governance with a view to determining the relationship between board size and bank performance. Data for the study were obtained from the audited financial statements of five sampled banks listed on the Nigerian Stock Exchange. Panel data technique was adopted and analysis was carried out with the use of multiple regression and pooled ordinary least square. Results from the study show that the larger the board size, the greater the profit implying that corporate governance is positively correlated with bank performance.

Keywords: corporate governance, banks performance, board size, pooled data

Procedia PDF Downloads 364
27188 The Impact of a Prior Haemophilus influenzae Infection in the Incidence of Prostate Cancer

Authors: Maximiliano Guerra, Lexi Frankel, Amalia D. Ardeljan, Sarah Ghali, Diya Kohli, Omar M. Rashid.

Abstract:

Introduction/Background: Haemophilus influenzae is present as a commensal organism in the nasopharynx of most healthy adults from where it can spread to cause both systemic and respiratory tract infection. Pathogenic properties of this bacterium as well as defects in host defense may result in the spread of these bacteria throughout the body. This can result in a proinflammatory state and colonization particularly in the lungs. Recent studies have failed to determine a link between H. Influenzae colonization and prostate cancer, despite previous research demonstrating the presence of proinflammatory states in preneoplastic and neoplastic prostate lesions. Given these contradictory findings, the primary goal of this study was to evaluate the correlation between H. Influenzae infection and the incidence of prostate cancer. Methods: To evaluate the incidence of Haemophilus influenzae infection and the development of prostate cancer in the future we used data provided by a Health Insurance Portability and Accountability Act (HIPAA) compliant national database. We were afforded access to this database by Holy Cross Health, Fort Lauderdale for the express purpose of academic research. Standard statistical methods were employed in this study including Pearson’s chi-square tests. Results: Between January 2010 and December 2019, the query was analyzed and resulted in 13, 691 patients in both the control and C. difficile infected groups, respectively. The two groups were matched by age range and CCI score. In the Haemophilus influenzae infected group, the incidence of prostate cancer was 1.46%, while the incidence of the prostate cancer control group was 4.56%. The observed difference in cancer incidence was determined to be a statistically significant p-value (< 2.2x10^-16). This suggests that patients with a history of C. difficile have less risk of developing prostate cancer (OR 0.425, 95% CI: 0.382 - 0.472). Treatment bias was considered, the data was analyzed and resulted in two groups matched groups of 3,208 patients in both the infected with H. Influenzae treated group and the control who used the same medications for a different cause. Patients infected with H. Influenzae and treated had an incidence of prostate cancer of 2.49% whereas the control group incidence of prostate cancer was 4.92% with a p-value (< 2.2x10^-16) OR 0.455 CI 95% (0.526 -0.754), proving that the initial results were not due to the use of medications. Conclusion: The findings of our study reveal a statistically significant correlation between H. Influenzae infection and a decreased incidence of prostate cancer. Our findings suggest that prior infection with H. Influenzae may confer some degree of protection to patients and reduce their risk for developing prostate cancer. Future research is recommended to further characterize the potential role of Haemophilus influenzae in the pathogenesis of prostate cancer.

Keywords: Haemophilus Influenzae, incidence, prostate cancer, risk.

Procedia PDF Downloads 205
27187 Empowering a New Frontier in Heart Disease Detection: Unleashing Quantum Machine Learning

Authors: Sadia Nasrin Tisha, Mushfika Sharmin Rahman, Javier Orduz

Abstract:

Machine learning is applied in a variety of fields throughout the world. The healthcare sector has benefited enormously from it. One of the most effective approaches for predicting human heart diseases is to use machine learning applications to classify data and predict the outcome as a classification. However, with the rapid advancement of quantum technology, quantum computing has emerged as a potential game-changer for many applications. Quantum algorithms have the potential to execute substantially faster than their classical equivalents, which can lead to significant improvements in computational performance and efficiency. In this study, we applied quantum machine learning concepts to predict coronary heart diseases from text data. We experimented thrice with three different features; and three feature sets. The data set consisted of 100 data points. We pursue to do a comparative analysis of the two approaches, highlighting the potential benefits of quantum machine learning for predicting heart diseases.

Keywords: quantum machine learning, SVM, QSVM, matrix product state

Procedia PDF Downloads 99
27186 Hearing Threshold Levels among Steel Industry Workers in Samut Prakan Province, Thailand

Authors: Petcharat  Kerdonfag, Surasak Taneepanichskul, Winai Wadwongtham

Abstract:

Industrial noise is usually considered as the main impact of the environmental health and safety because its exposure can cause permanently serious hearing damage. Despite providing strictly hearing protection standards and campaigning extensively encouraging public health awareness among industrial workers in Thailand, hazard noise-induced hearing loss has dramatically been massive obstacles for workers’ health. The aims of the study were to explore and specify the hearing threshold levels among steel industrial workers responsible in which higher noise levels of work zone and to examine the relationships of hearing loss and workers’ age and the length of employment in Samut Prakan province, Thailand. Cross-sectional study design was done. Ninety-three steel industrial workers in the designated zone of higher noise (> 85dBA) with more than 1 year of employment from two factories by simple random sampling and available to participate in were assessed by the audiometric screening at regional Samut Prakan hospital. Data of doing screening were collected from October to December, 2016 by the occupational medicine physician and a qualified occupational nurse. All participants were examined by the same examiners for the validity. An Audiometric testing was performed at least 14 hours after the last noise exposure from the workplace. Workers’ age and the length of employment were gathered by the developed occupational record form. Results: The range of workers’ age was from 23 to 59 years, (Mean = 41.67, SD = 9.69) and the length of employment was from 1 to 39 years, (Mean = 13.99, SD = 9.88). Fifty three (60.0%) out of all participants have been exposing to the hazard of noise in the workplace for more than 10 years. Twenty-three (24.7%) of them have been exposing to the hazard of noise less than or equal to 5 years. Seventeen (18.3%) of them have been exposing to the hazard of noise for 5 to 10 years. Using the cut point of less than or equal to 25 dBA of hearing thresholds, the average means of hearing thresholds for participants at 4, 6, and 8 kHz were 31.34, 29.62, and 25.64 dB, respectively for the right ear and 40.15, 32.20, and 25.48 dB for the left ear, respectively. The more developing age of workers in the work zone with hazard of noise, the more the hearing thresholds would be increasing at frequencies of 4, 6, and 8 kHz (p =.012, p =.026, p =.024) for the right ear, respectively and for the left ear only at the frequency 4 kHz (p =.009). Conclusion: The participants’ age in the hazard of noise work zone was significantly associated with the hearing loss in different levels while the length of participants’ employment was not significantly associated with the hearing loss. Thus hearing threshold levels among industrial workers would be regularly assessed and needed to be protected at the beginning of working.

Keywords: hearing threshold levels, hazard of noise, hearing loss, audiometric testing

Procedia PDF Downloads 231
27185 Blockchain’s Feasibility in Military Data Networks

Authors: Brenden M. Shutt, Lubjana Beshaj, Paul L. Goethals, Ambrose Kam

Abstract:

Communication security is of particular interest to military data networks. A relatively novel approach to network security is blockchain, a cryptographically secured distribution ledger with a decentralized consensus mechanism for data transaction processing. Recent advances in blockchain technology have proposed new techniques for both data validation and trust management, as well as different frameworks for managing dataflow. The purpose of this work is to test the feasibility of different blockchain architectures as applied to military command and control networks. Various architectures are tested through discrete-event simulation and the feasibility is determined based upon a blockchain design’s ability to maintain long-term stable performance at industry standards of throughput, network latency, and security. This work proposes a consortium blockchain architecture with a computationally inexpensive consensus mechanism, one that leverages a Proof-of-Identity (PoI) concept and a reputation management mechanism.

Keywords: blockchain, consensus mechanism, discrete-event simulation, fog computing

Procedia PDF Downloads 143
27184 Verification & Validation of Map Reduce Program Model for Parallel K-Mediod Algorithm on Hadoop Cluster

Authors: Trapti Sharma, Devesh Kumar Srivastava

Abstract:

This paper is basically a analysis study of above MapReduce implementation and also to verify and validate the MapReduce solution model for Parallel K-Mediod algorithm on Hadoop Cluster. MapReduce is a programming model which authorize the managing of huge amounts of data in parallel, on a large number of devices. It is specially well suited to constant or moderate changing set of data since the implementation point of a position is usually high. MapReduce has slowly become the framework of choice for “big data”. The MapReduce model authorizes for systematic and instant organizing of large scale data with a cluster of evaluate nodes. One of the primary affect in Hadoop is how to minimize the completion length (i.e. makespan) of a set of MapReduce duty. In this paper, we have verified and validated various MapReduce applications like wordcount, grep, terasort and parallel K-Mediod clustering algorithm. We have found that as the amount of nodes increases the completion time decreases.

Keywords: hadoop, mapreduce, k-mediod, validation, verification

Procedia PDF Downloads 374
27183 An Improved K-Means Algorithm for Gene Expression Data Clustering

Authors: Billel Kenidra, Mohamed Benmohammed

Abstract:

Data mining technique used in the field of clustering is a subject of active research and assists in biological pattern recognition and extraction of new knowledge from raw data. Clustering means the act of partitioning an unlabeled dataset into groups of similar objects. Each group, called a cluster, consists of objects that are similar between themselves and dissimilar to objects of other groups. Several clustering methods are based on partitional clustering. This category attempts to directly decompose the dataset into a set of disjoint clusters leading to an integer number of clusters that optimizes a given criterion function. The criterion function may emphasize a local or a global structure of the data, and its optimization is an iterative relocation procedure. The K-Means algorithm is one of the most widely used partitional clustering techniques. Since K-Means is extremely sensitive to the initial choice of centers and a poor choice of centers may lead to a local optimum that is quite inferior to the global optimum, we propose a strategy to initiate K-Means centers. The improved K-Means algorithm is compared with the original K-Means, and the results prove how the efficiency has been significantly improved.

Keywords: microarray data mining, biological pattern recognition, partitional clustering, k-means algorithm, centroid initialization

Procedia PDF Downloads 193
27182 "Revolutionizing Geographic Data: CADmapper's Automated Precision in CAD Drawing Transformation"

Authors: Toleen Alaqqad, Kadi Alshabramiy, Suad Zaafarany, Basma Musallam

Abstract:

CADmapper is a significant tool of software for transforming geographic data into realistic CAD drawings. It speeds up and simplifies the conversion process by automating it. This allows architects, urban planners, engineers, and geographic information system (GIS) experts to solely concentrate on the imaginative and scientific parts of their projects. While the future incorporation of AI has the potential for further improvements, CADmapper's current capabilities make it an indispensable asset in the business. It covers a combination of 2D and 3D city and urban area models. The user can select a specific square section of the map to view, and the fee is based on the dimensions of the area being viewed. The procedure is straightforward: you choose the area you want, then pick whether or not to include topography. 3D architectural data (if available), followed by selecting whatever design program or CAD style you want to publish the document which contains more than 200 free broad town plans in DXF format. If you desire to specify a bespoke area, it's free up to 1 km2.

Keywords: cadmaper, gdata, 2d and 3d data conversion, automated cad drawing, urban planning software

Procedia PDF Downloads 70
27181 Eat Right Campaign Initiative to Prevent Hypertension Amongst the Corporates in Uganda

Authors: Katanku Denis Musoga

Abstract:

Eat Right Campaign is an initiative that was started by the Nutrition Unit of Uganda Heart Institute with the objective of informing corporate workers in both the Government and Private sectors about how to eat to prevent Hypertension. In Uganda, according to the recent research undertaken by the Ministry of Health, 1 out of 4 adults is hypertensive and yet over 80% of those are not aware. This is attributed largely to poor eating habits influenced by a lack of knowledge. The major objective of the campaign was to demonstrate the need for effective strategic communication among the corporates by organizing workshops that involved dietary education, food demonstrations, and food preparation in an effort to prevent Hypertension. Permission from various Organizations was sought to carry out sensitization and health education while highlighting the significance of reducing financial losses to health care. The Campaign provided strategies for how to influence positive dietary changes. It involved screening for risk factors. A Pretest was given to the staff to ascertain their knowledge of how to eat right to prevent hypertension, and thereafter the campaign, a post-test was given to the same staff. This was done in all the 10 Organizations that we carried out the campaign. Over 80% of the staff had learned significantly and promised to practice what they had learned; also, the majority who had a higher Blood pressure measurement prior to the campaign returned with significantly lower blood pressure. Food demonstrations, preparations, and regular dietary education should be woven into the entire clinical and Public Health practice.

Keywords: eat right campaign initiative, corporates, prevent hypertension, dietary education

Procedia PDF Downloads 48
27180 Maternal and Neonatal Outcome: Comparison between Adolescents and Adult Pregnancy at Selected Hospital, Hetauda, Nepal

Authors: Laxmi Paudyal, Indira Adhikari Poudel, Muna Bhattarai

Abstract:

Introduction: Numerous factors can affect how pregnancies and births turn out. One of these is adolescent pregnancy, which is a worldwide issue with known causes, harmful impacts on both the mother's and the child's health, as well as various negative social and economic consequences. Objective: The study was carried out to compare the maternal and neonatal outcomes between adolescents and adult pregnancy. Methods: This retrospective hospital-based cohort study was conducted at Madan Bhandari Academy of Health of Health Sciences, Hetauda Hospital at Makwanpur. The study population was pregnant women who delivered at selected hospital within 1 year study period from 2079 Shrawan (July 2022) to 2080 Ashad (June 2023). A total of 479 mothers aged 20-30 years and 53 mothers aged 15-19 years were study participants, and they were selected using a simple random sampling lottery method. Data were collected from the hospital’s electronic database and the register maintained at the maternity ward and neonatal ward. Result: The findings indicate that 6.51% of the 3273 mothers who gave birth in a single year were in the adolescent age range. When comparing the two mother groups, more adult mothers than teenage mothers skipped the complete antenatal checkup. Compared to adult mothers, the mothers of adolescents were found to be underweight and to have less iron and folic acid supplement intake. Anaemia, UTI, and placental abnormalities during pregnancy have been reported by a greater percentage of teenage mothers than adult mothers, with p=0.032, p=0.025, and p=0.041, respectively. When compared to adult pregnancies, vaginal delivery and complicated delivery were both shown to be more common in teenage pregnancies (p=0.001 and p=0.012, respectively). Adolescent pregnancies were associated with higher rates of NICU admission (p=0.037), low birth weight (p=0.034), premature birth (p=0.001), and fetal deaths (p=0.024) than adult pregnancies. Conclusion: According to this study, there are some notable variations in obstetric and neonatal outcomes by the age of the mother. It was discovered that there were a considerable number of adverse effects on adolescent mothers both during their pregnancies and after giving birth. Need for strategic planning in preventing adolescent females from getting pregnant is recommended.

Keywords: adolescent, antenatal, natal, postnatal, neonatal, outcome

Procedia PDF Downloads 11
27179 Water and Beverage Consumption among Children and Adolescents in Tehran Metropolitan City of Iran

Authors: Mitra Abtahi, Esmat Nasseri, Morteza Abodllahi

Abstract:

Introduction: Adequate hydration is necessary for proper physical and mental function. The aim of this study is to determine the consumption of water and all other beverages in children (8-13 years) and adolescents (14-17 years) in Tehran metropolitan city of Iran. Materials and Methods: In this cross-sectional study, 455 children (8-13 years) and 334 adolescents (14-17 years) were retrieved from north, center, and south of Tehran (18 schools). Instrument for data collection consisted of a “demographic and general health” questionnaire and a “7-day fluid record”. Data analyses were performed with SPSS 16 software. Results: The mean total consumption of fluids in school children was 1302 ± 500.6 ml/day. The highest mean intakes were observed for water (666 ± 398 ml/day), followed by milk (239 ± 183 ml/day), regular soft beverages (RSB) (188 ± 148 ml/day), and juices (60 ± 74 ml/day). Water, hot drinks (mainly tea) and soft drinks intake was significantly more in boys than girls. A significantly lower intake of milk and a higher intake of RSB and hot beverages (mainly tea) have been seen among adolescents compared to children. Conclusion: The most important finding is that mean fluid intake of children and adolescents does not meet international adequate intake references for water and fluids. This finding may suggest the necessity of development of the local references. To improve fluid intake habits of children and adolescents, relevant policy making and actions are warranted.

Keywords: adolescents, beverages, children, water

Procedia PDF Downloads 176
27178 An IoT-Enabled Crop Recommendation System Utilizing Message Queuing Telemetry Transport (MQTT) for Efficient Data Transmission to AI/ML Models

Authors: Prashansa Singh, Rohit Bajaj, Manjot Kaur

Abstract:

In the modern agricultural landscape, precision farming has emerged as a pivotal strategy for enhancing crop yield and optimizing resource utilization. This paper introduces an innovative Crop Recommendation System (CRS) that leverages the Internet of Things (IoT) technology and the Message Queuing Telemetry Transport (MQTT) protocol to collect critical environmental and soil data via sensors deployed across agricultural fields. The system is designed to address the challenges of real-time data acquisition, efficient data transmission, and dynamic crop recommendation through the application of advanced Artificial Intelligence (AI) and Machine Learning (ML) models. The CRS architecture encompasses a network of sensors that continuously monitor environmental parameters such as temperature, humidity, soil moisture, and nutrient levels. This sensor data is then transmitted to a central MQTT server, ensuring reliable and low-latency communication even in bandwidth-constrained scenarios typical of rural agricultural settings. Upon reaching the server, the data is processed and analyzed by AI/ML models trained to correlate specific environmental conditions with optimal crop choices and cultivation practices. These models consider historical crop performance data, current agricultural research, and real-time field conditions to generate tailored crop recommendations. This implementation gets 99% accuracy.

Keywords: Iot, MQTT protocol, machine learning, sensor, publish, subscriber, agriculture, humidity

Procedia PDF Downloads 73
27177 A Conversational Chatbot for Cricket Analytics

Authors: Kishan Bharadwaj Shridhar

Abstract:

Cricket is a data-rich sport, generating vast amounts of information, much of which is captured as textual commentary. Leading cricket data providers, such as ESPN Cricinfo include valuable Decision Review System (DRS) statistics within these commentaries, often as footnotes. Despite the significance of this data, accessing and analyzing it efficiently remains a challenge. This paper presents the development of a sophisticated chatbot designed to answer queries specifically about DRS in cricket. It supports up to seven distinct query types, including individual player statistics, umpire performance, player vs umpire dynamics, comparisons between batter and bowler, a player’s record at specific venues and more. Additionally, it enables stateful conversations, allowing a user to seamlessly build upon previous queries for a fluid and interactive experience. Leveraging advanced text-to-SQL methodologies and open-source frameworks such as Langgraph, it ensures low latency and robust performance. A distinct prompt engineering module enables the system to accurately interpret query intent, dynamically transitioning to an assisted text-to-SQL approach or a rule-based engine, as needed. This solution is the one of its kind in cricket analytics, offering unparalleled insights in cricket through an intuitive interface. It can be extended to other facets of cricket data and beyond, to other sports that generate textual data.

Keywords: conversational AI, cricket data analytics, text to SQL, large language models, stateful conversations.

Procedia PDF Downloads 17
27176 Prediction of Covid-19 Cases and Current Situation of Italy and Its Different Regions Using Machine Learning Algorithm

Authors: Shafait Hussain Ali

Abstract:

Since its outbreak in China, the Covid_19 19 disease has been caused by the corona virus SARS N coyote 2. Italy was the first Western country to be severely affected, and the first country to take drastic measures to control the disease. In start of December 2019, the sudden outbreaks of the Coronary Virus Disease was caused by a new Corona 2 virus (SARS-CO2) of acute respiratory syndrome in china city Wuhan. The World Health Organization declared the epidemic a public health emergency of international concern on January 30, 2020,. On February 14, 2020, 49,053 laboratory-confirmed deaths and 1481 deaths have been reported worldwide. The threat of the disease has forced most of the governments to implement various control measures. Therefore it becomes necessary to analyze the Italian data very carefully, in particular to investigates and to find out the present condition and the number of infected persons in the form of positive cases, death, hospitalized or some other features of infected persons will clear in simple form. So used such a model that will clearly shows the real facts and figures and also understandable to every readable person which can get some real benefit after reading it. The model used must includes(total positive cases, current positive cases, hospitalized patients, death, recovered peoples frequency rates ) all features that explains and clear the wide range facts in very simple form and helpful to administration of that country.

Keywords: machine learning tools and techniques, rapid miner tool, Naive-Bayes algorithm, predictions

Procedia PDF Downloads 110
27175 Integration of Microarray Data into a Genome-Scale Metabolic Model to Study Flux Distribution after Gene Knockout

Authors: Mona Heydari, Ehsan Motamedian, Seyed Abbas Shojaosadati

Abstract:

Prediction of perturbations after genetic manipulation (especially gene knockout) is one of the important challenges in systems biology. In this paper, a new algorithm is introduced that integrates microarray data into the metabolic model. The algorithm was used to study the change in the cell phenotype after knockout of Gss gene in Escherichia coli BW25113. Algorithm implementation indicated that gene deletion resulted in more activation of the metabolic network. Growth yield was more and less regulating gene were identified for mutant in comparison with the wild-type strain.

Keywords: metabolic network, gene knockout, flux balance analysis, microarray data, integration

Procedia PDF Downloads 580
27174 Determining the Relationship Between Maternal Stress and Depression and Child Obesity: The Mediating Role of Maternal Self-efficacy

Authors: Alireza Monzavi Chaleshtori, Mahnaz Aliakbari Dehkordi, Maryam Aliakbari, Solmaz Seyed Mostafaii

Abstract:

Objective: Considering the growing obesity among children and the role of mother's psychological factors as well as the need to prevent childhood obesity, this study aimed to investigate the mediating role of mother's self-efficacy in the relationship between mother's stress and depression and child obesity. Method: For this purpose, in a descriptive-correlation study, 222 mothers and children aged 1 to 5 years in Tehran, who had the opportunity to answer an online questionnaire, were selected by random sampling and to the depression scales of the Kroenke and Spitzer Patient Health Questionnaire, Cohen's stress and Self-efficacy of Berkeley mothers answered. Pearson correlation test and path analysis were used for data analysis. Findings: The findings showed that maternal depression had an indirect and significant effect on child obesity, and the effect of stress and depression on child obesity was indirect and non-significant. Therefore, the model has a good fit with the research data, and stress and depression indirectly predicted child obesity with the mediating role of self-efficacy. Conclusion: The hypothesized model tested based on mother's stress and depression with the mediating role of mother's self-efficacy was a good model in explaining the prediction of child obesity. Based on the findings of this research, a practical framework can be provided to explain the psychological factors of the mother in relation to child obesity and its treatment.

Keywords: stress, self-efficacy, child obesity, depression

Procedia PDF Downloads 80
27173 Extracting Opinions from Big Data of Indonesian Customer Reviews Using Hadoop MapReduce

Authors: Veronica S. Moertini, Vinsensius Kevin, Gede Karya

Abstract:

Customer reviews have been collected by many kinds of e-commerce websites selling products, services, hotel rooms, tickets and so on. Each website collects its own customer reviews. The reviews can be crawled, collected from those websites and stored as big data. Text analysis techniques can be used to analyze that data to produce summarized information, such as customer opinions. Then, these opinions can be published by independent service provider websites and used to help customers in choosing the most suitable products or services. As the opinions are analyzed from big data of reviews originated from many websites, it is expected that the results are more trusted and accurate. Indonesian customers write reviews in Indonesian language, which comes with its own structures and uniqueness. We found that most of the reviews are expressed with “daily language”, which is informal, do not follow the correct grammar, have many abbreviations and slangs or non-formal words. Hadoop is an emerging platform aimed for storing and analyzing big data in distributed systems. A Hadoop cluster consists of master and slave nodes/computers operated in a network. Hadoop comes with distributed file system (HDFS) and MapReduce framework for supporting parallel computation. However, MapReduce has weakness (i.e. inefficient) for iterative computations, specifically, the cost of reading/writing data (I/O cost) is high. Given this fact, we conclude that MapReduce function is best adapted for “one-pass” computation. In this research, we develop an efficient technique for extracting or mining opinions from big data of Indonesian reviews, which is based on MapReduce with one-pass computation. In designing the algorithm, we avoid iterative computation and instead adopt a “look up table” technique. The stages of the proposed technique are: (1) Crawling the data reviews from websites; (2) cleaning and finding root words from the raw reviews; (3) computing the frequency of the meaningful opinion words; (4) analyzing customers sentiments towards defined objects. The experiments for evaluating the performance of the technique were conducted on a Hadoop cluster with 14 slave nodes. The results show that the proposed technique (stage 2 to 4) discovers useful opinions, is capable of processing big data efficiently and scalable.

Keywords: big data analysis, Hadoop MapReduce, analyzing text data, mining Indonesian reviews

Procedia PDF Downloads 201
27172 Influence of Atmospheric Pollutants on Child Respiratory Disease in Cartagena De Indias, Colombia

Authors: Jose A. Alvarez Aldegunde, Adrian Fernandez Sanchez, Matthew D. Menden, Bernardo Vila Rodriguez

Abstract:

Up to five statistical pre-processings have been carried out considering the pollutant records of the stations present in Cartagena de Indias, Colombia, also taking into account the childhood asthma incidence surveys conducted in hospitals in the city by the Health Ministry of Colombia for this study. These pre-processings have consisted of different techniques such as the determination of the quality of data collection, determination of the quality of the registration network, identification and debugging of errors in data collection, completion of missing data and purified data, as well as the improvement of the time scale of records. The characterization of the quality of the data has been conducted by means of density analysis of the pollutant registration stations using ArcGis Software and through mass balance techniques, making it possible to determine inconsistencies in the records relating the registration data between stations following the linear regression. The results obtained in this process have highlighted the positive quality in the pollutant registration process. Consequently, debugging of errors has allowed us to identify certain data as statistically non-significant in the incidence and series of contamination. This data, together with certain missing records in the series recorded by the measuring stations, have been completed by statistical imputation equations. Following the application of these prior processes, the basic series of incidence data for respiratory disease and pollutant records have allowed the characterization of the influence of pollutants on respiratory diseases such as, for example, childhood asthma. This characterization has been carried out using statistical correlation methods, including visual correlation, simple linear regression correlation and spectral analysis with PAST Software which identifies maximum periodicity cycles and minimums under the formula of the Lomb periodgram. In relation to part of the results obtained, up to eleven maximums and minimums considered contemporary between the incidence records and the particles have been identified taking into account the visual comparison. The spectral analyses that have been performed on the incidence and the PM2.5 have returned a series of similar maximum periods in both registers, which are at a maximum during a period of one year and another every 25 days (0.9 and 0.07 years). The bivariate analysis has managed to characterize the variable "Daily Vehicular Flow" in the ninth position of importance of a total of 55 variables. However, the statistical correlation has not obtained a favorable result, having obtained a low value of the R2 coefficient. The series of analyses conducted has demonstrated the importance of the influence of pollutants such as PM2.5 in the development of childhood asthma in Cartagena. The quantification of the influence of the variables has been able to determine that there is a 56% probability of dependence between PM2.5 and childhood respiratory asthma in Cartagena. Considering this justification, the study could be completed through the application of the BenMap Software, throwing a series of spatial results of interpolated values of the pollutant contamination records that exceeded the established legal limits (represented by homogeneous units up to the neighborhood level) and results of the impact on the exacerbation of pediatric asthma. As a final result, an economic estimate (in Colombian Pesos) of the monthly and individual savings derived from the percentage reduction of the influence of pollutants in relation to visits to the Hospital Emergency Room due to asthma exacerbation in pediatric patients has been granted.

Keywords: Asthma Incidence, BenMap, PM2.5, Statistical Analysis

Procedia PDF Downloads 121
27171 The Impact of the COVID-19 Pandemic on the Mental Health of Families Dealing with Attention-Deficit Hyperactivity Disorder

Authors: Alexis Winfield, Carly Sugar, Barbara Fenesi

Abstract:

The COVID-19 pandemic uprooted regular routines forcing many children to learn from home, requiring many adults to work from home, and cutting families off from support outside the home. Public health restrictions associated with the pandemic caused widespread psychological distress, including depression and anxiety, increased fear, panic, and stress. These trends are particularly concerning for families raising neuroatypical children, such as those with Attention-Deficit Hyperactivity Disorder (ADHD), as these children are already more likely than their typically developing peers to experience comorbid mental health issues and to experience greater distress when required to stay indoors. Families with children who have ADHD are also at greater risk for experiencing heightened familial stress due to the challenges associated with managing ADHD behavioural symptoms, greater parental discord and divorce, and greater financial difficulties compared to other families. The current study engaged families comprised of at least one child diagnosed with ADHD to elucidate 1) the unique ways that the COVID-19 pandemic affected their mental health and 2) the specific barriers these families faced to maintaining optimal mental wellbeing. A total of 33 participants (15 parent-child dyads) engaged in virtual interviews. Content analysis revealed that the most frequently identified mental health effects for families were increased child anxiety and disconnectedness, as well as deteriorating parental mental health. The most frequently identified barriers to maintaining optimal mental well-being were lack of routine, lack of social interaction and social support, and uncertainty and fear. Findings underscore areas of need during times of large-scale social isolation, bring voice to the families of children with ADHD, and contribute to our understanding of the pandemic’s impact on the wellbeing of vulnerable families. This work contributes to a growing body of research aimed at creating safeguards to support mental wellbeing for vulnerable families during times of crisis.

Keywords: attention-deficit hyperactivity disorder, COVID-19, mental health, vulnerable families

Procedia PDF Downloads 295
27170 Global City Typologies: 300 Cities and Over 100 Datasets

Authors: M. Novak, E. Munoz, A. Jana, M. Nelemans

Abstract:

Cities and local governments the world over are interested to employ circular strategies as a means to bring about food security, create employment and increase resilience. The selection and implementation of circular strategies is facilitated by modeling the effects of strategies locally and understanding the impacts such strategies have had in other (comparable) cities and how that would translate locally. Urban areas are heterogeneous because of their geographic, economic, social characteristics, governance, and culture. In order to better understand the effect of circular strategies on urban systems, we create a dataset for over 300 cities around the world designed to facilitate circular strategy scenario modeling. This new dataset integrates data from over 20 prominent global national and urban data sources, such as the Global Human Settlements layer and International Labour Organisation, as well as incorporating employment data from over 150 cities collected bottom up from local departments and data providers. The dataset is made to be reproducible. Various clustering techniques are explored in the paper. The result is sets of clusters of cities, which can be used for further research, analysis, and support comparative, regional, and national policy making on circular cities.

Keywords: data integration, urban innovation, cluster analysis, circular economy, city profiles, scenario modelling

Procedia PDF Downloads 187