Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 7402

Search results for: transfer learning

7402 A Study of Transferable Strategies in Multilanguage Learning

Authors: Zixi You

Abstract:

With the demand of multilingual speakers increasing in the job market, multi-language learning programs have become more and more popular among undergraduate students. A study on multi-language learning strategies is therefore highly demanded on both practical and theoretical levels. Based on previous classification of learning strategies in SLA, and an investigation of BA Modern Language program students (with post-A level L2 and ab initio L3 learning experience from year one), this study explores and compares different types of learning strategies used by multi-language speakers and learners, transferable learning strategies between L2 and L3, and factors affecting the transfer. The results indicate that all the 23 types of learning strategies of L2 are employed when learning L3 from ab initio level, yet with different tendencies. Learning strategy transfer from L2 to L3 (i.e., the learners attribute the applying of these L3 learning strategies to be a direct result of their L2 learning experience) are observed in all 23 types of learning strategies. Comparatively, six types of “cognitive strategies” have higher transfer tendency than others. With regard to the failure of the transfer of some particular L2 strategies and the development of independent L3 strategies of individual learners, factors such as language proficiency, language typology and learning environment have played important roles among others. The presentation of this study will provide audiences with detailed data, insightful analysis and discussion on both theoretical and practical aspects of multi-language learning that will benefit both students and educators.

Keywords: learning strategy, multi-language acquisition, second language acquisition, strategy transfer

Procedia PDF Downloads 497
7401 A Comprehensive Study of Camouflaged Object Detection Using Deep Learning

Authors: Khalak Bin Khair, Saqib Jahir, Mohammed Ibrahim, Fahad Bin, Debajyoti Karmaker

Abstract:

Object detection is a computer technology that deals with searching through digital images and videos for occurrences of semantic elements of a particular class. It is associated with image processing and computer vision. On top of object detection, we detect camouflage objects within an image using Deep Learning techniques. Deep learning may be a subset of machine learning that's essentially a three-layer neural network Over 6500 images that possess camouflage properties are gathered from various internet sources and divided into 4 categories to compare the result. Those images are labeled and then trained and tested using vgg16 architecture on the jupyter notebook using the TensorFlow platform. The architecture is further customized using Transfer Learning. Methods for transferring information from one or more of these source tasks to increase learning in a related target task are created through transfer learning. The purpose of this transfer of learning methodologies is to aid in the evolution of machine learning to the point where it is as efficient as human learning.

Keywords: deep learning, transfer learning, TensorFlow, camouflage, object detection, architecture, accuracy, model, VGG16

Procedia PDF Downloads 13
7400 Partial Knowledge Transfer Between the Source Problem and the Target Problem in Genetic Algorithms

Authors: Terence Soule, Tami Al Ghamdi

Abstract:

To study how the partial knowledge transfer may affect the Genetic Algorithm (GA) performance, we model the Transfer Learning (TL) process using GA as the model solver. The objective of the TL is to transfer the knowledge from one problem to another related problem. This process imitates how humans think in their daily life. In this paper, we proposed to study a case where the knowledge transferred from the S problem has less information than what the T problem needs. We sampled the transferred population using different strategies of TL. The results showed transfer part of the knowledge is helpful and speeds the GA process of finding a solution to the problem.

Keywords: transfer learning, partial transfer, evolutionary computation, genetic algorithm

Procedia PDF Downloads 39
7399 Student-Created Videos to Foster Active Learning in Heat Transfer Course

Authors: W.Appamana, S. Jantasee, P. Siwarasak, T. Mueansichai, C. Kaewbuddee

Abstract:

Heat transfer is important in chemical engineering field. We have to know how to predict rates of heat transfer in a variety of process situations. Therefore, heat transfer learning is one of the greatest challenges for undergraduate students in chemical engineering. To enhance student learning in classroom, active-learning method was proposed in a single classroom, using problems based on videos and creating video, think-pair-share and jigsaw technique. The result shows that active learning method can prevent copying of the solutions manual for students and improve average examination scores about 5% when comparing with students in traditional section. Overall, this project represents an effective type of class that motivates student-centric learning while enhancing self-motivation, creative thinking and critical analysis among students.

Keywords: active learning, student-created video, self-motivation, creative thinking

Procedia PDF Downloads 170
7398 Transfer Learning in Actuarial Science: Primer and Applications

Authors: Youngsun Kim

Abstract:

With the increase in data availability, the use of machine learning methods has gained popularity in both the academia and business world. Many studies from different disciplines are using machine learning methods to address their question of interest. But expanding the usage of such models based on traditional machine learning methods requires a large amount of labeled data, which is costly from an economic standpoint. This is also relevant to the actuarial science field. With the limited amount of labeled data, using advanced learners—particularly deep neural networks—that hasled to major advances in other domains is difficult. The small margin of predictive superiority, particularly when considered with other problems such as model stability and interpretability such “black-box” models face, explains why sofar, deep learning is not the method of choice in actuarial modeling. Researchers from other fields propose transfer learning as a potential solution in similar contexts. Transfer learning is taking the knowledge gained from a previous problem and applying it to a new but related problem. By transferring knowledge at the data level as well as the model level, transfer learning can reduce the cost of collecting a large amount of new labeled data and increase the predictive performance of a model. In this paper, various transfer learning approaches are introduced and applied to publicly available insurance datasets. The performance of each approach will be evaluated compared to a baseline model in the actuarial context. This will demonstrate the possibility of transfer learning as another solution to the limitation of machine learning approaches that are present in the realm of actuarial science.

Keywords: machine learning, transfer learning, actuarial modeling, predictive performance

Procedia PDF Downloads 26
7397 Teaching for Knowledge Transfer: Best Practices from a Graduate-Level Educational Psychology Distance Learning Program

Authors: Bobby Hoffman

Abstract:

One measure of effective instruction is the ability to solve authentic, real-world problems by effectively transferring and applying classroom and textbook knowledge. While many students can productively earn high grades and learn course content, they are not always able to apply the knowledge they gain. As such, this quasi-experimental study compared the comprehensive exit exam results of learners across instructional modalities who completed a prominent graduate-level educational psychology program. ANCOVA revealed superior knowledge transfer for blended-learning students compared to those who completed distance education and significantly greater transfer of declarative, procedural, and self-regulatory knowledge by the blended-learning students. This paper briefly summarizes the study results while highlighting evidence-based programmatic and course level modifications that were implemented to specifically address the transfer of learning and practical application of educational psychology knowledge.

Keywords: assessment, distance learning, educational psychology, knowledge transfer

Procedia PDF Downloads 105
7396 Transfer Knowledge From Multiple Source Problems to a Target Problem in Genetic Algorithm

Authors: Terence Soule, Tami Al Ghamdi

Abstract:

To study how to transfer knowledge from multiple source problems to the target problem, we modeled the Transfer Learning (TL) process using Genetic Algorithms as the model solver. TL is the process that aims to transfer learned data from one problem to another problem. The TL process aims to help Machine Learning (ML) algorithms find a solution to the problems. The Genetic Algorithms (GA) give researchers access to information that we have about how the old problem is solved. In this paper, we have five different source problems, and we transfer the knowledge to the target problem. We studied different scenarios of the target problem. The results showed combined knowledge from multiple source problems improves the GA performance. Also, the process of combining knowledge from several problems results in promoting diversity of the transferred population.

Keywords: transfer learning, genetic algorithm, evolutionary computation, source and target

Procedia PDF Downloads 31
7395 A Review of Machine Learning for Big Data

Authors: Devatha Kalyan Kumar, Aravindraj D., Sadathulla A.

Abstract:

Big data are now rapidly expanding in all engineering and science and many other domains. The potential of large or massive data is undoubtedly significant, make sense to require new ways of thinking and learning techniques to address the various big data challenges. Machine learning is continuously unleashing its power in a wide range of applications. In this paper, the latest advances and advancements in the researches on machine learning for big data processing. First, the machine learning techniques methods in recent studies, such as deep learning, representation learning, transfer learning, active learning and distributed and parallel learning. Then focus on the challenges and possible solutions of machine learning for big data.

Keywords: active learning, big data, deep learning, machine learning

Procedia PDF Downloads 324
7394 Sustaining Language Learning: A Case Study of Multilingual Writers' ePortfolios

Authors: Amy Hodges, Deanna Rasmussen, Sherry Ward

Abstract:

This paper examines the use of ePortfolios in a two-course sequence for ESL (English as a Second Language) students at an international branch campus in Doha, Qatar. ePortfolios support the transfer of language learning, but few have examined the sustainability of that transfer across an ESL program. Drawing upon surveys and interviews with students, we analyze three case studies that complicate previous research on metacognition, language learning, and ePortfolios. Our findings have implications for those involved in ESL programs and assessment of student writing.

Keywords: TESOL, electronic portfolios, assessment, technology

Procedia PDF Downloads 199
7393 A Study of Learning Achievement for Heat Transfer by Using Experimental Sets of Convection with the Predict-Observe-Explain Teaching Technique

Authors: Wanlapa Boonsod, Nisachon Yangprasong, Udomsak Kitthawee

Abstract:

Thermal physics education is a complicated and challenging topic to discuss in any classroom. As a result, most students tend to be uninterested in learning this topic. In the current study, a convection experiment set was devised to show how heat can be transferred by a convection system to a thermoelectric plate until a LED flashes. This research aimed to 1) create a natural convection experimental set, 2) study learning achievement on the convection experimental set with the predict-observe-explain (POE) technique, and 3) study satisfaction for the convection experimental set with the predict-observe-explain (POE) technique. The samples were chosen by purposive sampling and comprised 28 students in grade 11 at Patumkongka School in Bangkok, Thailand. The primary research instrument was the plan for predict-observe-explain (POE) technique on heat transfer using a convection experimental set. Heat transfer experimental set by convection. The instruments used to collect data included a heat transfer achievement model by convection, a Satisfaction Questionnaire after the learning activity, and the predict-observe-explain (POE) technique for heat transfer using a convection experimental set. The research format comprised a one-group pretest-posttest design. The data was analyzed by GeoGebra program. The statistics used in the research were mean, standard deviation and t-test for dependent samples. The results of the research showed that achievement on heat transfer using convection experimental set was composed of thermo-electrics on the top side attached to the heat sink and another side attached to a stainless plate. Electrical current was displayed by the flashing of a 5v LED. The entire set of thermo-electrics was set up on the top of the box and heated by an alcohol burner. The achievement of learning was measured with the predict-observe-explain (POE) technique, with the natural convection experimental set statistically higher than before learning at a 0.01 level. Satisfaction with POE for physics learning of heat transfer by using convection experimental set was at a high level (4.83 from 5.00).

Keywords: convection, heat transfer, physics education, POE

Procedia PDF Downloads 154
7392 Factors Affecting General Practitioners’ Transfer of Specialized Self-Care Knowledge to Patients

Authors: Weidong Xia, Malgorzata Kolotylo, Xuan Tan

Abstract:

This study examines the key factors that influence general practitioners’ learning and transfer of specialized arthritis knowledge and self-care techniques to patients during normal patient visits. Drawing on the theory of planed behavior and using matched survey data collected from general practitioners before and after training sessions provided by specialized orthopedic physicians, the study suggests that the general practitioner’s intention to use and transfer learned knowledge was influenced mainly by intrinsic motivation, organizational learning culture and absorptive capacity, but was not influenced by extrinsic motivation. The results provide both theoretical and practical implications.

Keywords: empirical study, healthcare knowledge management, patient self-care, physician knowledge transfer

Procedia PDF Downloads 226
7391 A Comparison of Methods for Neural Network Aggregation

Authors: John Pomerat, Aviv Segev

Abstract:

Recently, deep learning has had many theoretical breakthroughs. For deep learning to be successful in the industry, however, there need to be practical algorithms capable of handling many real-world hiccups preventing the immediate application of a learning algorithm. Although AI promises to revolutionize the healthcare industry, getting access to patient data in order to train learning algorithms has not been easy. One proposed solution to this is data- sharing. In this paper, we propose an alternative protocol, based on multi-party computation, to train deep learning models while maintaining both the privacy and security of training data. We examine three methods of training neural networks in this way: Transfer learning, average ensemble learning, and series network learning. We compare these methods to the equivalent model obtained through data-sharing across two different experiments. Additionally, we address the security concerns of this protocol. While the motivating example is healthcare, our findings regarding multi-party computation of neural network training are purely theoretical and have use-cases outside the domain of healthcare.

Keywords: neural network aggregation, multi-party computation, transfer learning, average ensemble learning

Procedia PDF Downloads 60
7390 Comparison of Machine Learning and Deep Learning Algorithms for Automatic Classification of 80 Different Pollen Species

Authors: Endrick Barnacin, Jean-Luc Henry, Jimmy Nagau, Jack Molinie

Abstract:

Palynology is a field of interest in many disciplines due to its multiple applications: chronological dating, climatology, allergy treatment, and honey characterization. Unfortunately, the analysis of a pollen slide is a complicated and time consuming task that requires the intervention of experts in the field, which are becoming increasingly rare due to economic and social conditions. That is why the need for automation of this task is urgent. A lot of studies have investigated the subject using different standard image processing descriptors and sometimes hand-crafted ones.In this work, we make a comparative study between classical feature extraction methods (Shape, GLCM, LBP, and others) and Deep Learning (CNN, Autoencoders, Transfer Learning) to perform a recognition task over 80 regional pollen species. It has been found that the use of Transfer Learning seems to be more precise than the other approaches

Keywords: pollens identification, features extraction, pollens classification, automated palynology

Procedia PDF Downloads 31
7389 Uncertainty Estimation in Neural Networks through Transfer Learning

Authors: Ashish James, Anusha James

Abstract:

The impressive predictive performance of deep learning techniques on a wide range of tasks has led to its widespread use. Estimating the confidence of these predictions is paramount for improving the safety and reliability of such systems. However, the uncertainty estimates provided by neural networks (NNs) tend to be overconfident and unreasonable. Ensemble of NNs typically produce good predictions but uncertainty estimates tend to be inconsistent. Inspired by these, this paper presents a framework that can quantitatively estimate the uncertainties by leveraging the advances in transfer learning through slight modification to the existing training pipelines. This promising algorithm is developed with an intention of deployment in real world problems which already boast a good predictive performance by reusing those pretrained models. The idea is to capture the behavior of the trained NNs for the base task by augmenting it with the uncertainty estimates from a supplementary network. A series of experiments with known and unknown distributions show that the proposed approach produces well calibrated uncertainty estimates with high quality predictions.

Keywords: uncertainty estimation, neural networks, transfer learning, regression

Procedia PDF Downloads 5
7388 Competences for Learning beyond the Academic Context

Authors: Cristina Galván-Fernández

Abstract:

Students differentiate the different contexts of their lives as well as employment, hobbies or studies. In higher education is needed to transfer the experiential knowledge to theory and viceversa. However, is difficult to achieve than students use their personal experiences and social readings for get the learning evidences. In an experience with 178 education students from Chile and Spain we have used an e-portfolio system and a methodology for 4 years with the aims of help them to: 1) self-regulate their learning process and 2) use social networks and professional experiences for make the learning evidences. These two objectives have been controlled by interviews to the same students in different moments and two questionnaires. The results of this study show that students recognize the ownership of their learning and progress in planning and reflection of their own learning.

Keywords: competences, e-portfolio, higher education, self-regulation

Procedia PDF Downloads 224
7387 Bidirectional Encoder Representations from Transformers Sentiment Analysis Applied to Three Presidential Pre-Candidates in Costa Rica

Authors: Félix David Suárez Bonilla

Abstract:

A sentiment analysis service to detect polarity (positive, neural, and negative), based on transfer learning, was built using a Spanish version of BERT and applied to tweets written in Spanish. The dataset that was used consisted of 11975 reviews, which were extracted from Google Play using the google-play-scrapper package. The BETO trained model used: the AdamW optimizer, a batch size of 16, a learning rate of 2x10⁻⁵ and 10 epochs. The system was tested using tweets of three presidential pre-candidates from Costa Rica. The system was finally validated using human labeled examples, achieving an accuracy of 83.3%.

Keywords: NLP, transfer learning, BERT, sentiment analysis, social media, opinion mining

Procedia PDF Downloads 52
7386 DLCCDP: A Deep Learning Approach for the Classification of Car Damage Parts

Authors: Michael Abebe Berwo, Yong Fang, Jabar Mahmood

Abstract:

Car damaged parts classification is an important discipline with a wide range of computer applications that classifies car parts based on input images. However, the success of the car’s damaged parts evaluation is dependent on the technician’s ability and knowledge to carry out the inspection. Automatic classification utilizing Deep Convolutional Neural Networks (DCNNs) can help improve the speed with which these damaged parts are repaired. Transfer learning of DCNN pre-trained models such as DenseNet-121, DenseNet-161, DenseNet-169, DenseNet-201, ResNet-50, and ResNet-101 was performed using various measures: fine-tuning (FT) with learned parameters and generated images, and FT with learned parameters and generated images. The FT with data augmentation achieved great outcomes in pre-trained networks. The ResNet-50 outstanding-performing neural network was chosen for car damage part classification, with an AUC, accuracy, recall, F-Score, and precision of 98.97%, 99.31%, 98.16%, 98.15%, and 98.18%, respectively, for the test dataset, which was independently preserved. A deep model-based transfer learning architecture can assist car insurance and rental companies, as well as professionals, in inspecting parts related to damage in car images. So, this quick method can help save time and money and cut down on delays in processing claims.

Keywords: car damage part classification, data augmentation, deep learning, pre-trained models, transfer learning

Procedia PDF Downloads 13
7385 Deliberate Learning and Practice: Enhancing Situated Learning Approach in Professional Communication Course

Authors: Susan Lee

Abstract:

Situated learning principles are adopted in the design of the module, professional communication, in its iteration of tasks and assignments to create a learning environment that simulates workplace reality. The success of situated learning is met when students are able to transfer and apply their skills beyond the classroom, in their personal life, and workplace. The learning process should help students recognize the relevance and opportunities for application. In the module’s learning component on negotiation, cases are created based on scenarios inspired by industry practices. The cases simulate scenarios that students on the course may encounter when they enter the workforce when they take on executive roles in the real estate sector. Engaging in the cases has enhanced students’ learning experience as they apply interpersonal communication skills in negotiation contexts of executives. Through the process of case analysis, role-playing, and peer feedback, students are placed in an experiential learning space to think and act in a deliberate manner not only as students but as professionals they will graduate to be. The immersive skills practices enable students to continuously apply a range of verbal and non-verbal communication skills purposefully as they stage their negotiations. The theme in students' feedback resonates with their awareness of the authentic and workplace experiences offered through visceral role-playing. Students also note relevant opportunities for the future transfer of the skills acquired. This indicates that students recognize the possibility of encountering similar negotiation episodes in the real world and realize they possess the negotiation tools and communication skills to deliberately apply them when these opportunities arise outside the classroom.

Keywords: deliberate practice, interpersonal communication skills, role-play, situated learning

Procedia PDF Downloads 123
7384 University-Industry Technology Transfer and Technology Transfer Offices in Emerging Economies

Authors: José Carlos Rodríguez, Mario Gómez

Abstract:

The aim of this paper is to get insight on the nature of university-industry technology transfer (UITT) and technology transfer offices (TTOs) activity at universities in the case of emerging economies. In relation to the process of transferring knowledge/technology in the case of emerging economies, knowledge/technology transfer in these economies are more reactive than in developed economies due to differences in maturity of technologies. It is assumed in this paper that knowledge/technology transfer is a complex phenomenon, and thus the paper contributes to get insight on the nature of UITT and TTOs creation in the case of emerging economies by using a system dynamics model of knowledge/technology transfer in these countries. The paper recognizes the differences between industrialized countries and emerging economies on these phenomena.

Keywords: university-industry technology transfer, technology transfer offices, technology transfer models, emerging economies

Procedia PDF Downloads 141
7383 Jet Impingement Heat Transfer on a Rib-Roughened Flat Plate

Authors: A. H. Alenezi

Abstract:

Cooling by impingement jet is known to have a significant high local and average heat transfer coefficient which make it widely used in industrial cooling systems. The heat transfer characteristics of an impinging jet on rib-roughened flat plate has been investigated numerically. This paper was set out to investigate the effect of rib height on the heat transfer rate. Since the flow needs to have enough spacing after passing the rib to allow reattachment especially for high Reynolds numbers, this study focuses on finding the optimum rib height which would be the best to maximize the heat transfer rate downstream the plate. This investigation employs a round nozzle with hydraulic diameter (Dh) of 13.5 mm, Jet-to-target distance of (H/D) of 4, rib location=1.5D and and finally jet angels of 45˚ and 90˚ under the influence of Re =10,000.

Keywords: jet impingement, CFD, turbulence model, heat transfer

Procedia PDF Downloads 268
7382 Experimental Study of Heat Transfer Enhancement Using Protruded Rectangular Fin

Authors: Tarique Jamil Khan, Swapnil Pande

Abstract:

The investigation deals with the study of heat transfer enhancement using protruded square fin. This study is enough to determine whether protrusion in forced convection is enough to enhance the rate of heat transfer. It includes the results after performing experiments by using a plane rectangular fin of aluminum material and the same dimension rectangular fin of the same material but having protruded circular shape extended normally. The fins made by a sand casting method. The results clearly mentioned that the protruded surface is effective enough to enhance the rate of heat transfer. This research investigates a modern fin topologies heat transfer characteristics that will clearly outdated the conventional fin to increase the rate of heat transfer. Protruded fins improve the rate of heat transfer compared to solid fin by varying shape of the protrusion in diameter and height.

Keywords: heat transfer enhancement, forced convection, protruted fin, rectangular fin

Procedia PDF Downloads 241
7381 Leveraging Learning Analytics to Inform Learning Design in Higher Education

Authors: Mingming Jiang

Abstract:

This literature review aims to offer an overview of existing research on learning analytics and learning design, the alignment between the two, and how learning analytics has been leveraged to inform learning design in higher education. Current research suggests a need to create more alignment and integration between learning analytics and learning design in order to not only ground learning analytics on learning sciences but also enable data-driven decisions in learning design to improve learning outcomes. In addition, multiple conceptual frameworks have been proposed to enhance the synergy and alignment between learning analytics and learning design. Future research should explore this synergy further in the unique context of higher education, identifying learning analytics metrics in higher education that can offer insight into learning processes, evaluating the effect of learning analytics outcomes on learning design decision-making in higher education, and designing learning environments in higher education that make the capturing and deployment of learning analytics outcomes more efficient.

Keywords: learning analytics, learning design, big data in higher education, online learning environments

Procedia PDF Downloads 30
7380 Exergy Losses Relation with Driving Forces in Heat Transfer Process

Authors: S. Ali Ashrafizadeh, M. Amidpour, N. Hedayat

Abstract:

Driving forces along with transfer coefficient affect on heat transfer rate, on the other hand, with regard to the relation of these forces with irriversibilities they are effective on exergy losses. Therefore, the driving forces can be used as a relation between heat transfer rate, transfer coefficients and exergy losses. In this paper, first, the relation of the exergetic efficiency and resistant forces is obtained, next the relation between exergy efficiency, relative driving force, heat transfer rate and heat resistances is considered. In all cases, results are argued graphically. Finally, a case study inspected by obtained results.

Keywords: heat transfer, exergy losses, exergetic efficiency, driving forces

Procedia PDF Downloads 509
7379 The Development of Educational Video Games Aimed at Enhancing Academic Motivation and Learning Among African American Males

Authors: Kenneth Philip Jones

Abstract:

This dissertation investigates the potential of developing educational-based video games to motivate and engage African American males. The study employed a qualitative methodological approach by investigating African American males who are avid video game players and are currently enrolled at a college or university. The participants were individually and collectively video and audio recorded during the interviews and observations. Situated Learning theory analyzed how motivation and engagement can transfer from a video game to an educational context. The research aims to address the disparities in our educational systems when it comes to providing a culture, climate, and atmosphere that will enable the academic development of African American males. The primary objective of the findings is based on the participants’ responses and the data collected to provide recommendations to educators and scholars on how to address the issues that have demoralized African American males in education and provide a platform that will allow for equality in educational development and advancement.

Keywords: video games, motivation, behavioral, learning transfer

Procedia PDF Downloads 12
7378 Forster Energy Transfer and Optoelectronic Properties of (PFO/TiO2)/Fluorol 7GA Hybrid Thin Films

Authors: Bandar Ali Al-Asbahi, Mohammad Hafizuddin Haji Jumali

Abstract:

Forster energy transfer between poly (9,9'-di-n-octylfluorenyl-2,7-diyl) (PFO)/TiO2 nanoparticles (NPs) as a donor and Fluorol 7GA as an acceptor has been studied. The energy transfer parameters were calculated by using mathematical models. The dominant mechanism responsible for the energy transfer between the donor and acceptor molecules was Forster-type, as evidenced by large values of quenching rate constant, energy transfer rate constant and critical distance of energy transfer. Moreover, these composites which were used as an emissive layer in organic light emitting diodes, were investigated in terms of current density–voltage and electroluminescence spectra.

Keywords: energy transfer parameters, forster-type, electroluminescence, organic light emitting diodes

Procedia PDF Downloads 311
7377 Vision-Based Daily Routine Recognition for Healthcare with Transfer Learning

Authors: Bruce X. B. Yu, Yan Liu, Keith C. C. Chan

Abstract:

We propose to record Activities of Daily Living (ADLs) of elderly people using a vision-based system so as to provide better assistive and personalization technologies. Current ADL-related research is based on data collected with help from non-elderly subjects in laboratory environments and the activities performed are predetermined for the sole purpose of data collection. To obtain more realistic datasets for the application, we recorded ADLs for the elderly with data collected from real-world environment involving real elderly subjects. Motivated by the need to collect data for more effective research related to elderly care, we chose to collect data in the room of an elderly person. Specifically, we installed Kinect, a vision-based sensor on the ceiling, to capture the activities that the elderly subject performs in the morning every day. Based on the data, we identified 12 morning activities that the elderly person performs daily. To recognize these activities, we created a HARELCARE framework to investigate into the effectiveness of existing Human Activity Recognition (HAR) algorithms and propose the use of a transfer learning algorithm for HAR. We compared the performance, in terms of accuracy, and training progress. Although the collected dataset is relatively small, the proposed algorithm has a good potential to be applied to all daily routine activities for healthcare purposes such as evidence-based diagnosis and treatment.

Keywords: daily activity recognition, healthcare, IoT sensors, transfer learning

Procedia PDF Downloads 68
7376 Capacitive Coupling Wireless Power Transfer System with 6.78 MHz Class D Inverter

Authors: Kang Hyun Yi

Abstract:

Wireless power transfer technologies are inductive coupling, magnetic resonance, and capacitive coupling methods, typically. Among them, the capacitive coupling wireless power transfer, also named Capacitive Coupling Wireless Power Transfer (CCWPT), has been researched to overcome the drawbacks of other approaches. The CCWPT has many advantages such as a simple structure, low standing power loss, reduced Electromagnetic Interference (EMI) and the ability to transfer power through metal barriers. In this paper, the CCWPT system with 6.78MHz class D inverter is proposed and analyzed. The proposed system is consisted of the 6.78MHz class D inverter with the LC low pass filter, the capacitor between a transmitter and a receiver and impedance transformers. The system is verified with a prototype for charging mobile devices.

Keywords: wireless power transfer, capacitive coupling power transfer, class D inverter, 6.78MHz

Procedia PDF Downloads 538
7375 Neuro-Fuzzy Approach to Improve Reliability in Auxiliary Power Supply System for Nuclear Power Plant

Authors: John K. Avor, Choong-Koo Chang

Abstract:

The transfer of electrical loads at power generation stations from Standby Auxiliary Transformer (SAT) to Unit Auxiliary Transformer (UAT) and vice versa is through a fast bus transfer scheme. Fast bus transfer is a time-critical application where the transfer process depends on various parameters, thus transfer schemes apply advance algorithms to ensure power supply reliability and continuity. In a nuclear power generation station, supply continuity is essential, especially for critical class 1E electrical loads. Bus transfers must, therefore, be executed accurately within 4 to 10 cycles in order to achieve safety system requirements. However, the main problem is that there are instances where transfer schemes scrambled due to inaccurate interpretation of key parameters; and consequently, have failed to transfer several critical loads from UAT to the SAT during main generator trip event. Although several techniques have been adopted to develop robust transfer schemes, a combination of Artificial Neural Network and Fuzzy Systems (Neuro-Fuzzy) has not been extensively used. In this paper, we apply the concept of Neuro-Fuzzy to determine plant operating mode and dynamic prediction of the appropriate bus transfer algorithm to be selected based on the first cycle of voltage information. The performance of Sequential Fast Transfer and Residual Bus Transfer schemes was evaluated through simulation and integration of the Neuro-Fuzzy system. The objective for adopting Neuro-Fuzzy approach in the bus transfer scheme is to utilize the signal validation capabilities of artificial neural network, specifically the back-propagation algorithm which is very accurate in learning completely new systems. This research presents a combined effect of artificial neural network and fuzzy systems to accurately interpret key bus transfer parameters such as magnitude of the residual voltage, decay time, and the associated phase angle of the residual voltage in order to determine the possibility of high speed bus transfer for a particular bus and the corresponding transfer algorithm. This demonstrates potential for general applicability to improve reliability of the auxiliary power distribution system. The performance of the scheme is implemented on APR1400 nuclear power plant auxiliary system.

Keywords: auxiliary power system, bus transfer scheme, fuzzy logic, neural networks, reliability

Procedia PDF Downloads 110
7374 Examining E-learning Capability in Chinese Higher Education: A Case Study of Hong Kong

Authors: Elson Szeto

Abstract:

Over the past 15 years, digital technology has ubiquitously penetrated societies around the world. New values of e-learning are emerging in the preparation of future talents, while e-learning is a key driver of widening participation and knowledge transfer in Chinese higher education. As a vibrant, Chinese society in Asia, Hong Kong’s new generation university students, perhaps the digital natives, have been learning with e-learning since their basic education. They can acquire new knowledge with the use of different forms of e-learning as a generic competence. These students who embrace this competence further their study journeys in higher education. This project reviews the Government’s policy of Information Technology in Education which has largely put forward since 1998. So far, primary to secondary education has embraced advantages of e-learning capability to advance the learning of different subject knowledge. Yet, e-learning capacity in higher education is yet to be fully examined in Hong Kong. The study reported in this paper is a pilot investigation into e-learning capacity in Chinese higher education in the region. By conducting a qualitative case study of Hong Kong, the investigation focuses on (1) the institutional ICT settings in general; (2) the pedagogic responses to e-learning in specific; and (3) the university students’ satisfaction of e-learning. It is imperative to revisit the e-learning capacity for promoting effective learning amongst university students, supporting new knowledge acquisition and embracing new opportunities in the 21st century. As a pilot case study, data will be collected from individual interviews with the e-learning management team members of a university, teachers who use e-learning for teaching and students who attend courses comprised of e-learning components. The findings show the e-learning capacity of the university and the key components of leveraging e-learning capability as a university-wide learning settings. The findings will inform institutions’ senior management, enabling them to effectively enhance institutional e-learning capacity for effective learning and teaching and new knowledge acquisition. Policymakers will be aware of new potentials of e-learning for the preparation of future talents in this society at large.

Keywords: capability, e-learning, higher education, student learning

Procedia PDF Downloads 201
7373 Information Technology Outsourcing and Knowledge Transfer: Achieving Strategic Alignment through Organizational Learning

Authors: M. Kolotylo, H. Zheng, R. Parente, R. Dahiya

Abstract:

Large number of organizations, frequently motivated by budget and cost cuts, outsource their Information Technology (IT) positions every year. Although the objective of reduction in financial obligations is often not accomplished, many buyer companies still manage to benefit from outsourcing projects. Knowledge Transfer (KT), being one of the major processes that take place during IT outsourcing partnership, may exert a strong impact on the performance of the parties involved, particularly that of the buyer. Research, however, lacks strong conceptual basis for the possible benefits that KT from supplier may bring to the buyer; and for the mechanisms that may be adopted by the buyer to maximize such benefit. This paper aims to fill this gap by proposing a conceptual framework of organizational learning and development of dynamic capabilities enabled by KT from the supplier to the buyer. The study examines buyer-supplier relationships in the context of IT outsourcing transactions, and theorizes how KT from the supplier to the buyer helps the performance of the buyer. It warrants that more research is carried out in order to explicate and provide evidence regarding the role that KT plays in strategic improvements for the buyer. The paper proposes to take up a two-fold approach to the research: conceptual development that utilizes logical argumentation and interpretive historical research, as well as a qualitative case study which aims to capture and understand the complex processes involved. Thus, the study provides a comprehensive visualization of the dynamics of the conditions under which participation in IT outsourcing partnership might be of benefit to the buyer company. The framework demonstrates the mechanisms involved in buyer’s achievement of strategic alignment through organizational learning enabled by KT from the supplier. It highlights that organizational learning involves a balance between exploitation of assets and exploration of new possibilities, and further notes that the dynamic capabilities mediate the effect of organizational learning on firm performance. The paper explicates in what ways managers can leverage outsourcing projects to execute strategy, which would enable their organization achieve better performance. The study concludes that organizational learning enables the firm to develop IT capabilities of strategic planning, IT integration, and IT relationships in the outsourcing context, and that IT capabilities developed through the organizational learning would help the firm in achieving strategic alignment.

Keywords: dynamic capabilities, it outsourcing, knowledge transfer, organizational learning, strategic alignment

Procedia PDF Downloads 253