Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 20970

Search results for: cluster analysis

20970 Cluster Analysis of Customer Churn in Telecom Industry

Authors: Abbas Al-Refaie

Abstract:

The research examines the factors that affect customer churn (CC) in the Jordanian telecom industry. A total of 700 surveys were distributed. Cluster analysis revealed three main clusters. Results showed that CC and customer satisfaction (CS) were the key determinants in forming the three clusters. In two clusters, the center values of CC were high, indicating that the customers were loyal and SC was expensive and time- and energy-consuming. Still, the mobile service provider (MSP) should enhance its communication (COM), and value added services (VASs), as well as customer complaint management systems (CCMS). Finally, for the third cluster the center of the CC indicates a poor level of loyalty, which facilitates customers churn to another MSP. The results of this study provide valuable feedback for MSP decision makers regarding approaches to improving their performance and reducing CC.

Keywords: cluster analysis, telecom industry, switching cost, customer churn

Procedia PDF Downloads 220
20969 The Use of Ward Linkage in Cluster Integration with a Path Analysis Approach

Authors: Adji Achmad Rinaldo Fernandes

Abstract:

Path analysis is an analytical technique to study the causal relationship between independent and dependent variables. In this study, the integration of Clusters in the Ward Linkage method was used in a variety of clusters with path analysis. The variables used are character (x₁), capacity (x₂), capital (x₃), collateral (x₄), and condition of economy (x₄) to on time pay (y₂) through the variable willingness to pay (y₁). The purpose of this study was to compare the Ward Linkage method cluster integration in various clusters with path analysis to classify willingness to pay (y₁). The data used are primary data from questionnaires filled out by customers of Bank X, using purposive sampling. The measurement method used is the average score method. The results showed that the Ward linkage method cluster integration with path analysis on 2 clusters is the best method, by comparing the coefficient of determination. Variable character (x₁), capacity (x₂), capital (x₃), collateral (x₄), and condition of economy (x₅) to on time pay (y₂) through willingness to pay (y₁) can be explained by 58.3%, while the remaining 41.7% is explained by variables outside the model.

Keywords: cluster integration, linkage, path analysis, compliant paying behavior

Procedia PDF Downloads 31
20968 Analysis Customer Loyalty Characteristic and Segmentation Analysis in Mobile Phone Category in Indonesia

Authors: A. B. Robert, Adam Pramadia, Calvin Andika

Abstract:

The main purpose of this study is to explore consumer loyalty characteristic of mobile phone category in Indonesia. Second, this research attempts to identify consumer segment and to explore their profile in each segment as the basis of marketing strategy formulation. This study used some tools of multivariate analysis such as discriminant analysis and cluster analysis. Discriminate analysis used to discriminate consumer loyal and not loyal by using particular variables. Cluster analysis used to reveal various segment in mobile phone category. In addition to having better customer understanding in each segment, this study used descriptive analysis and cross tab analysis in each segment defined by cluster analysis. This study expected several findings. First, consumer can be divided into two large group of loyal versus not loyal by set of variables. Second, this study identifies customer segment in mobile phone category. Third, exploring customer profile in each segment that has been identified. This study answer a call for additional empirical research into different product categories. Therefore, a replication research is advisable. By knowing the customer loyalty characteristic, and deep analysis of their consumption behavior and profile for each segment, this study is very advisable for high impact marketing strategy development. This study contributes body of knowledge by adding empirical study of consumer loyalty, segmentation analysis in mobile phone category by multiple brand analysis.

Keywords: customer loyalty, segmentation, marketing strategy, discriminant analysis, cluster analysis, mobile phone

Procedia PDF Downloads 439
20967 Analysis of Expression Data Using Unsupervised Techniques

Authors: M. A. I Perera, C. R. Wijesinghe, A. R. Weerasinghe

Abstract:

his study was conducted to review and identify the unsupervised techniques that can be employed to analyze gene expression data in order to identify better subtypes of tumors. Identifying subtypes of cancer help in improving the efficacy and reducing the toxicity of the treatments by identifying clues to find target therapeutics. Process of gene expression data analysis described under three steps as preprocessing, clustering, and cluster validation. Feature selection is important since the genomic data are high dimensional with a large number of features compared to samples. Hierarchical clustering and K Means are often used in the analysis of gene expression data. There are several cluster validation techniques used in validating the clusters. Heatmaps are an effective external validation method that allows comparing the identified classes with clinical variables and visual analysis of the classes.

Keywords: cancer subtypes, gene expression data analysis, clustering, cluster validation

Procedia PDF Downloads 27
20966 Clustering Locations of Textile and Garment Industries to Compare with the Future Industrial Cluster in Thailand

Authors: Kanogkan Leerojanaprapa

Abstract:

Textile and garment industry is used to a major exporting industry of Thailand. According to lacking of the nation's price-competitiveness by stopping the EU's GSP (Generalised Scheme of Preferences) and ‘Nationwide Minimum Wage Policy’ that Thailand’s employers must pay all employees at least 300 baht (about $10) a day, the supply chains of the Thai textile and garment industry is affected and need to be reformed. Therefore, either Thai textile or garment industry will be existed or not would be concerned. This is also challenged for the government to decide which industries should be promoted the future industries of Thailand. Recently Thai government launch The Cluster-based Special Economic Development Zones Policy for promoting business cluster (effect on September 16, 2015). They define a cluster as the concentration of interconnected businesses and related institutions that operate within the same geographic areas and textiles and garment is one of target industrial clusters and 9 provinces are targeted (Bangkok, Kanchanaburi, Nakhon Pathom, Ratchaburi, Samut Sakhon, Chonburi, Chachoengsao, Prachinburi, and Sa Kaeo). The cluster zone are defined to link west-east corridor connected to manufacturing source in Cambodia and Mynmar to Bangkok where are promoted to be design, sourcing, and trading hub. The Thai government will provide tax and non-tax incentives for targeted industries within the clusters and expects these businesses are scattered to where they can get the most benefit which will identify future industrial cluster. This research will show the difference between the current cluster and future cluster following the target provinces of the textile and garment. The current cluster is analysed from secondary data. The four characteristics of the numbers of plants in Spinning, weaving and finishing of textiles, Manufacture of made-up textile articles, except apparel, Manufacture of knitted and crocheted fabrics, and Manufacture of other textiles, not elsewhere classified in particular 77 provinces (in total) are clustered by K-means cluster analysis and Hierarchical Cluster Analysis. In addition, the cluster can be confirmed and showed which variables contribute the most to defined cluster solution with ANOVA test. The results of analysis can identify 22 provinces (which the textile or garment plants are located) into 3 clusters. Plants in cluster 1 tend to be large numbers of plants which is only Bangkok, Next plants in cluster 2 tend to be moderate numbers of plants which are Samut Prakan, Samut Sakhon and Nakhon Pathom. Finally plants in cluster 3 tend to be little numbers of plants which are other 18 provinces. The same methodology can be implemented in other industries for future study.

Keywords: ANOVA, hierarchical cluster analysis, industrial clusters, K -means cluster analysis, textile and garment industry

Procedia PDF Downloads 135
20965 Scientific Linux Cluster for BIG-DATA Analysis (SLBD): A Case of Fayoum University

Authors: Hassan S. Hussein, Rania A. Abul Seoud, Amr M. Refaat

Abstract:

Scientific researchers face in the analysis of very large data sets that is increasing noticeable rate in today’s and tomorrow’s technologies. Hadoop and Spark are types of software that developed frameworks. Hadoop framework is suitable for many Different hardware platforms. In this research, a scientific Linux cluster for Big Data analysis (SLBD) is presented. SLBD runs open source software with large computational capacity and high performance cluster infrastructure. SLBD composed of one cluster contains identical, commodity-grade computers interconnected via a small LAN. SLBD consists of a fast switch and Gigabit-Ethernet card which connect four (nodes). Cloudera Manager is used to configure and manage an Apache Hadoop stack. Hadoop is a framework allows storing and processing big data across the cluster by using MapReduce algorithm. MapReduce algorithm divides the task into smaller tasks which to be assigned to the network nodes. Algorithm then collects the results and form the final result dataset. SLBD clustering system allows fast and efficient processing of large amount of data resulting from different applications. SLBD also provides high performance, high throughput, high availability, expandability and cluster scalability.

Keywords: big data platforms, cloudera manager, Hadoop, MapReduce

Procedia PDF Downloads 264
20964 A Comparative and Critical Analysis of Some Routing Protocols in Wireless Sensor Networks

Authors: Ishtiaq Wahid, Masood Ahmad, Nighat Ayub, Sajad Ali

Abstract:

Lifetime of a wireless sensor network (WSN) is directly proportional to the energy consumption of its constituent nodes. Routing in wireless sensor network is very challenging due its inherit characteristics. In hierarchal routing the sensor filed is divided into clusters. The cluster-heads are selected from each cluster, which forms a hierarchy of nodes. The cluster-heads are used to transmit the data to the base station while other nodes perform the sensing task. In this way the lifetime of the network is increased. In this paper a comparative study of hierarchal routing protocols are conducted. The simulation is done in NS-2 for validation.

Keywords: WSN, cluster, routing, sensor networks

Procedia PDF Downloads 304
20963 Analysis of Entrepreneurship in Industrial Cluster

Authors: Wen-Hsiang Lai

Abstract:

Except for the internal aspects of entrepreneurship (i.e. motivation, opportunity perspective and alertness), there are external aspects that affecting entrepreneurship (i.e. the industrial cluster). By comparing the machinery companies located inside and outside the industrial district, this study aims to explore the cluster effects on the entrepreneurship of companies in Taiwan machinery clusters (TMC). In this study, three factors affecting the entrepreneurship in TMC are conducted as “competition”, “embedded-ness” and “specialized knowledge”. The “competition” in the industrial cluster is defined as the competitive advantages that companies gain in form of demand effects and diversified strategies; the “embedded-ness” refers to the quality of company relations (relational embedded-ness) and ranges (structural embedded-ness) with the industry components (universities, customers and complementary) that affecting knowledge transfer and knowledge generations; the “specialized knowledge” shares the internal knowledge within industrial clusters. This study finds that when comparing to the companies which are outside the cluster, the industrial cluster has positive influence on the entrepreneurship. Additionally, the factor of “relational embedded-ness” has significant impact on the entrepreneurship and affects the adaptation ability of companies in TMC. Finally, the factor of “competition” reveals partial influence on the entrepreneurship.

Keywords: entrepreneurship, industrial cluster, industrial district, economies of agglomerations, Taiwan Machinery Cluster (TMC)

Procedia PDF Downloads 278
20962 Evaluation of Groundwater Quality and Its Suitability for Drinking and Agricultural Purposes Using Self-Organizing Maps

Authors: L. Belkhiri, L. Mouni, A. Tiri, T.S. Narany

Abstract:

In the present study, the self-organizing map (SOM) clustering technique was applied to identify homogeneous clusters of hydrochemical parameters in El Milia plain, Algeria, to assess the quality of groundwater for potable and agricultural purposes. The visualization of SOM-analysis indicated that 35 groundwater samples collected in the study area were classified into three clusters, which showed progressive increase in electrical conductivity from cluster one to cluster three. Samples belonging to cluster one are mostly located in the recharge zone showing hard fresh water type, however, water type gradually changed to hard-brackish type in the discharge zone, including clusters two and three. Ionic ratio studies indicated the role of carbonate rock dissolution in increases on groundwater hardness, especially in cluster one. However, evaporation and evapotranspiration are the main processes increasing salinity in cluster two and three.

Keywords: groundwater quality, self-organizing maps, drinking water, irrigation water

Procedia PDF Downloads 133
20961 Genomic Diversity of Clostridium perfringens Strains in Food and Human Sources

Authors: Asma Afshari, Abdollah Jamshidi, Jamshid Razmyar, Mehrnaz Rad

Abstract:

Clostridium perfringens is a serious pathogen which causes enteric diseases in domestic animals and food poisoning in humans. Spores can survive cooking processes and play an important role in the possible onset of disease. In this study RAPD-PCR and REP-PCR were used to examine the genetic diversity of 49isolates ofC. Perfringens type A from 3 different sources. The results of RAPD-PCR revealed the most genetic diversity among poultry isolates, while human isolates showed the least genetic diversity. Cluster analysis obtained from RAPD_PCR and based on the genetic distances split the 49 strains into five distinct major clusters (A, B, C, D, and E). Cluster A and C were composed of isolates from poultry meat, cluster B was composed of isolates from human feces, cluster D was composed of isolates from minced meat, poultry meat and human feces and cluster E was composed of isolates from minced meat. Further characterization of these strains by using (GTG) 5 fingerprint repetitive sequence-based PCR analysis did not show further differentiation between various types of strains. To our knowledge, this is the first study in which the genetic diversity of C. perfringens isolates from different types of meats and human feces has been investigated.

Keywords: C. perfringens, genetic diversity, RAPD-PCR, REP-PCR

Procedia PDF Downloads 371
20960 Role of Tourism Cluster in Improvement of Economic Competitiveness of Georgia

Authors: Alexander Sharashenidze

Abstract:

This article discusses the role of tourism in the economics of Georgia, justifies the necessity of several governmental supporting tools for diversification of tourism product and increasing competitiveness. Tourism directions are characterized through discovering Georgian tourism potential, considering cultural and geographical features; tools of formating supplemental products and development opportunities of Tbilisi and, also regions are asserted in the case of conducting appropriate government policy. There are presented tools of suggesting innovative tourism products, improvement of service, decreasing taxes, also providing availability to them. The role of tourism cluster in improvement of national competitiveness is substantiated. Based on the analysis of competitive factors influencing the development of tourism cluster, conclusions are made, and recommendations are suggested.

Keywords: economic competitivness, enhancing competitiveness, Georgian economic, tourism cluster, tourism product

Procedia PDF Downloads 386
20959 An Exploratory Study of Nasik Small and Medium Enterprises Cluster

Authors: Pragya Bhawsar, Utpal Chattopadhyay

Abstract:

Small and Medium Enterprises play crucial role in contributing to economic objectives of an emerging nation. To support SMEs, the idea of creation of clusters has been prevalent since past two decades. In this paper, an attempt has been done to explore the impact of being in the cluster on the competitiveness of SMEs. To meet the objective, Nasik Cluster (India) has been selected. The information was collected by means of two focus group discussions and survey of thirty SMEs. The finding generates interest revealing the fact that under the concept ‘Cluster’ a lot of ambiguity flourish. Besides the problems and opportunities of the firms in the cluster the results bring to notice that the benefits of clusterization can only reach to SMEs when the whole location can be considered/understood as a cluster, rather than many subsets (various forms of clusters) prevailing under it. Fostering such an understanding calls for harmony among the various stakeholders of the clusters. The dynamics of interaction among government, local industry associations, relevant institutions, large firms and finally SMEs which makes the most of the location based cluster, are significant in shaping the host cluster’s competitiveness and vice versa.

Keywords: SMEs, industry clusters, common facility centres, co-creation, policy

Procedia PDF Downloads 193
20958 Enhanced Cluster Based Connectivity Maintenance in Vehicular Ad Hoc Network

Authors: Manverpreet Kaur, Amarpreet Singh

Abstract:

The demand of Vehicular ad hoc networks is increasing day by day, due to offering the various applications and marvelous benefits to VANET users. Clustering in VANETs is most important to overcome the connectivity problems of VANETs. In this paper, we proposed a new clustering technique Enhanced cluster based connectivity maintenance in vehicular ad hoc network. Our objective is to form long living clusters. The proposed approach is grouping the vehicles, on the basis of the longest list of neighbors to form clusters. The cluster formation and cluster head selection process done by the RSU that may results it reduces the chances of overhead on to the network. The cluster head selection procedure is the vehicle which has closest speed to average speed will elect as a cluster Head by the RSU and if two vehicles have same speed which is closest to average speed then they will be calculate by one of the new parameter i.e. distance to their respective destination. The vehicle which has largest distance to their destination will be choosing as a cluster Head by the RSU. Our simulation outcomes show that our technique performs better than the existing technique.

Keywords: VANETs, clustering, connectivity, cluster head, intelligent transportation system (ITS)

Procedia PDF Downloads 134
20957 Simulation Approach for a Comparison of Linked Cluster Algorithm and Clusterhead Size Algorithm in Ad Hoc Networks

Authors: Ameen Jameel Alawneh

Abstract:

A Mobile ad-hoc network (MANET) is a collection of wireless mobile hosts that dynamically form a temporary network without the aid of a system administrator. It has neither fixed infrastructure nor wireless ad hoc sessions. It inherently reaches several nodes with a single transmission, and each node functions as both a host and a router. The network maybe represented as a set of clusters each managed by clusterhead. The cluster size is not fixed and it depends on the movement of nodes. We proposed a clusterhead size algorithm (CHSize). This clustering algorithm can be used by several routing algorithms for ad hoc networks. An elected clusterhead is assigned for communication with all other clusters. Analysis and simulation of the algorithm has been implemented using GloMoSim networks simulator, MATLAB and MAPL11 proved that the proposed algorithm achieves the goals.

Keywords: simulation, MANET, Ad-hoc, cluster head size, linked cluster algorithm, loss and dropped packets

Procedia PDF Downloads 262
20956 Analysis of Expert Information in Linguistic Terms

Authors: O. Poleshchuk, E. Komarov

Abstract:

In this paper, semantic spaces with the properties of completeness and orthogonality (complete orthogonal semantic spaces) were chosen as models of expert evaluations. As the theoretical and practical studies have shown all the properties of complete orthogonal semantic spaces correspond to the thinking activity of experts that is why these semantic spaces were chosen for modeling. Two methods of construction such spaces were proposed. Models of comparative and fuzzy cluster analysis of expert evaluations were developed. The practical application of the developed methods has demonstrated their viability and validity.

Keywords: expert evaluation, comparative analysis, fuzzy cluster analysis, theoretical and practical studies

Procedia PDF Downloads 349
20955 Factors Predicting Symptom Cluster Functional Status and Quality of Life of Chronic Obstructive Pulmonary Disease Patients

Authors: D. Supaporn, B. Julaluk

Abstract:

The purposes of this study were to study symptom cluster, functional status and quality of life of patients with chronic obstructive pulmonary disease (COPD), and to examine factors related to and predicting symptom cluster, functional status and quality of life of COPD patients. The sample was 180 COPD patients multi-stage random sampling from 4 hospitals in the eastern region, Thailand. The research instruments were 8 questionnaires and recorded forms measuring personal and illness data, co-morbidity, physical and psychological symptom, health status perception, social support, and regimen adherence, functional status and quality of life. Spearman rank and Pearson correlation coefficient, exploratory factors analysis and standard multiple regression were used to analyzed data. The findings revealed that two symptom clusters were generated: physical symptom cluster including dyspnea, fatigue and insomnia; and, psychological symptom cluster including anxiety and depression. Scores of physical symptom cluster was at moderate level while that of psychological symptom cluster was at low level. Scores on functional status, social support and overall regimen adherence were at good level whereas scores on quality of life and health status perception were at moderate level. Disease severity was positively related to physical symptom cluster, psychological symptom cluster and quality of life, and was negatively related to functional status at a moderate level (rs = .512, .509, .588 and -.611, respectively). Co-morbidity was positively related to physical symptom cluster and psychological symptom cluster at a low level (r = .179 and .176, respectively). Regimen adherence was negatively related to quality of life and psychological symptom cluster at a low level (r=-.277 and -.309, respectively), and was positively related to functional status at a moderate level (r=.331). Health status perception was negatively related to physical symptom cluster, psychological symptom cluster and quality of life at a moderate to high level (r = -.567, -.640 and -.721, respectively) and was positively related to functional status at a high level (r = .732). Social support was positively related to functional status (r=.235) and was negatively related to quality of life at a low level (r=-.178). Physical symptom cluster was negatively related to functional status (r= -.490) and was positively related to quality of life at a moderate level (r=.566). Psychological symptom cluster was negatively related to functional status and was positively related to quality of life at a moderate level (r= -.566 and .559, respectively). Disease severity, co-morbidity and health status perception could predict 40.2% of the variance of physical symptom cluster. Disease severity, co-morbidity, regimen adherence and health status perception could predict 49.8% of the variance of psychological symptom cluster. Co-morbidity, regimen adherence and health status perception could predict 65.0% of the variance of functional status. Disease severity, health status perception and physical symptom cluster could predict 60.0% of the variance of quality of life in COPD patients. The results of this study can be used for enhancing quality of life of COPD patients.

Keywords: chronic obstructive pulmonary disease, functional status, quality of life, symptom cluster

Procedia PDF Downloads 444
20954 Statistical Analysis to Select Evacuation Route

Authors: Zaky Musyarof, Dwi Yono Sutarto, Dwima Rindy Atika, R. B. Fajriya Hakim

Abstract:

Each country should be responsible for the safety of people, especially responsible for the safety of people living in disaster-prone areas. One of those services is provides evacuation route for them. But all this time, the selection of evacuation route is seem doesn’t well organized, it could be seen that when a disaster happen, there will be many accumulation of people on the steps of evacuation route. That condition is dangerous to people because hampers evacuation process. By some methods in Statistical analysis, author tries to give a suggestion how to prepare evacuation route which is organized and based on people habit. Those methods are association rules, sequential pattern mining, hierarchical cluster analysis and fuzzy logic.

Keywords: association rules, sequential pattern mining, cluster analysis, fuzzy logic, evacuation route

Procedia PDF Downloads 364
20953 The Effects on Yield and Yield Components of Different Level Cluster Tip Reduction and Foliar Boric Acid Applications on Alphonse Lavallee Grape Cultivar

Authors: A. Akın, H. Çoban

Abstract:

This study was carried out to determine the effects of Control (C), 1/3 Cluster Tip Reduction (1/3 CTR), 1/6 Cluster Tip Reduction (1/6 CTR), 1/9 Cluster Tip Reduction (1/9 CTR), 1/3 CTR + Boric Acid (BA), 1/6 CTR + BA, 1/9 CTR + BA applications on yield and yield components of four years old Alphonse Lavallee grape variety (Vitis vinifera L.) grown on grafted 110 Paulsen rootstock in Konya province in Turkey in the vegetation period in 2015. According to the results, the highest maturity index 21.46 with 1/9 CTR application; the highest grape juice yields 736.67 ml with 1/3 CTR + BA application; the highest L* color value 32.07 with 1/9 CTR application; the highest a* color value 1.74 with 1/9 CTR application; the highest b* color value 3.72 with 1/9 CTR application were obtained. The effects of applications on grape fresh yield, cluster weight and berry weight were not found statistically significant.

Keywords: alphonse lavallee grape cultivar, different cluster tip reduction (1/3, 1/6, 1/9), foliar boric acid application, yield, quality

Procedia PDF Downloads 175
20952 Comparative Analysis of the Computer Methods' Usage for Calculation of Hydrocarbon Reserves in the Baltic Sea

Authors: Pavel Shcherban, Vlad Golovanov

Abstract:

Nowadays, the depletion of hydrocarbon deposits on the land of the Kaliningrad region leads to active geological exploration and development of oil and natural gas reserves in the southeastern part of the Baltic Sea. LLC 'Lukoil-Kaliningradmorneft' implements a comprehensive program for the development of the region's shelf in 2014-2023. Due to heterogeneity of reservoir rocks in various open fields, as well as with ambiguous conclusions on the contours of deposits, additional geological prospecting and refinement of the recoverable oil reserves are carried out. The key element is use of an effective technique of computer stock modeling at the first stage of processing of the received data. The following step uses information for the cluster analysis, which makes it possible to optimize the field development approaches. The article analyzes the effectiveness of various methods for reserves' calculation and computer modelling methods of the offshore hydrocarbon fields. Cluster analysis allows to measure influence of the obtained data on the development of a technical and economic model for mining deposits. The relationship between the accuracy of the calculation of recoverable reserves and the need of modernization of existing mining infrastructure, as well as the optimization of the scheme of opening and development of oil deposits, is observed.

Keywords: cluster analysis, computer modelling of deposits, correction of the feasibility study, offshore hydrocarbon fields

Procedia PDF Downloads 59
20951 Wind Velocity Climate Zonation Based on Observation Data in Indonesia Using Cluster and Principal Component Analysis

Authors: I Dewa Gede Arya Putra

Abstract:

Principal Component Analysis (PCA) is a mathematical procedure that uses orthogonal transformation techniques to change a set of data with components that may be related become components that are not related to each other. This can have an impact on clustering wind speed characteristics in Indonesia. This study uses data daily wind speed observations of the Site Meteorological Station network for 30 years. Multicollinearity tests were also performed on all of these data before doing clustering with PCA. The results show that the four main components have a total diversity of above 80% which will be used for clusters. Division of clusters using Ward's method obtained 3 types of clusters. Cluster 1 covers the central part of Sumatra Island, northern Kalimantan, northern Sulawesi, and northern Maluku with the climatological pattern of wind speed that does not have an annual cycle and a weak speed throughout the year with a low-speed ranging from 0 to 1,5 m/s². Cluster 2 covers the northern part of Sumatra Island, South Sulawesi, Bali, northern Papua with the climatological pattern conditions of wind speed that have annual cycle variations with low speeds ranging from 1 to 3 m/s². Cluster 3 covers the eastern part of Java Island, the Southeast Nusa Islands, and the southern Maluku Islands with the climatological pattern of wind speed conditions that have annual cycle variations with high speeds ranging from 1 to 4.5 m/s².

Keywords: PCA, cluster, Ward's method, wind speed

Procedia PDF Downloads 52
20950 Assessment of Energy Consumption in Cluster Redevelopment: A Case Study of Bhendi Bazar in Mumbai

Authors: Insiya Kapasi, Roshni Udyavar Yehuda

Abstract:

Cluster Redevelopment is a new concept in the city of Mumbai. Its regulations were laid down by the government in 2009. The concept of cluster redevelopment encompasses a group of buildings defined by a boundary as specified by the municipal authority (in this case, Mumbai), which may be dilapidated or approved for redevelopment. The study analyses the effect of cluster redevelopment in the form of renewal of old group of buildings as compared to refurbishment or restoration - on energy consumption. The methodology includes methods of assessment to determine increase or decrease in energy consumption in cluster redevelopment based on different criteria such as carpet area of the units, building envelope and its architectural elements. Results show that as the area and number of units increase the Energy consumption increases and the EPI (energy performance index) decreases as compared to the base case. The energy consumption per unit area declines by 29% in the proposed cluster redevelopment as compared to the original settlement. It is recommended that although the development is spacious and provides more light and ventilation, aspects such as glass type, traditional architectural features and consumer behavior are critical in the reduction of energy consumption.

Keywords: Cluster Redevelopment, Energy Consumption, Energy Efficiency, Typologies

Procedia PDF Downloads 28
20949 An Investigative Study on the Use of Online Marketing Methods in Hungary

Authors: E. Happ, Zs. Ivancsone Horvath

Abstract:

With the development of the information technology, IT, sector, all industry of the world has a new path, dealing with digitalisation. Tourism is the most rapidly increasing industry in the world. Without digitalisation, tourism operators would not be competitive enough with foreign destinations or other experience-based service providers. Digitalisation is also necessary to enable organizations, which are interested in tourism to meet the growing expectations of consumers. With the help of digitalisation, tourism providers can also obtain information about tourists, changes in consumer behaviour, and the use of online services. The degree of digitalisation in tourism is different for different services. The research is based on a questionnaire survey conducted in 2018 in Hungary. The sample with more than 500 respondents was processed by the SPSS program, using a variety of analysis methods. The following two variables were observed from more aspects: frequency of travel and the importance of services related to online travel. With the help of these variables, a cluster analysis was performed among the participants. The sample can be divided into two groups using K-mean cluster analysis. Cluster ‘1’ is a positive group; they can be called the “most digital tourists.” They agree in most things, with low standard deviation, and for them, digitalisation is a starting point. To the members of Cluster ‘2’, digitalisation is important, too. The results show what is important (accommodation, information gathering) to them, but also what they are not interested in at all within the digital world (e.g., car rental or online sharing). Interestingly, there is no third negative cluster. This result (that there is no result) proves that tourism uses digitalisation, and the question is only the extent of the use of online tools and methods. With the help of the designed consumer groups, the characteristics of digital tourism segments can be identified. The help of different variables characterised these groups. One of them is the frequency of travel, where there is a significant correlation between travel frequency and cluster membership. The shift is clear towards Cluster ‘1’, which means, those who find services related to online travel more important, are more likely to travel as well. By learning more about digital tourists’ consumer behaviour, the results of this research can help the providers in what kind of marketing tools could be used to influence the consumer choices of the different consumer groups created using digital devices, furthermore how to conduct more detailed and effective marketing activities. The main finding of the research was that most of the people have digital tools which are important to be able to participate in e-tourism. Of these, mobile devices are increasingly preferred. That means the challenge for service providers is no longer the digital presence but having optimised application for different devices.

Keywords: cluster analysis, digital tourism, marketing tool, tourist behaviour

Procedia PDF Downloads 24
20948 A Multivariate Statistical Approach for Water Quality Assessment of River Hindon, India

Authors: Nida Rizvi, Deeksha Katyal, Varun Joshi

Abstract:

River Hindon is an important river catering the demand of highly populated rural and industrial cluster of western Uttar Pradesh, India. Water quality of river Hindon is deteriorating at an alarming rate due to various industrial, municipal and agricultural activities. The present study aimed at identifying the pollution sources and quantifying the degree to which these sources are responsible for the deteriorating water quality of the river. Various water quality parameters, like pH, temperature, electrical conductivity, total dissolved solids, total hardness, calcium, chloride, nitrate, sulphate, biological oxygen demand, chemical oxygen demand and total alkalinity were assessed. Water quality data obtained from eight study sites for one year has been subjected to the two multivariate techniques, namely, principal component analysis and cluster analysis. Principal component analysis was applied with the aim to find out spatial variability and to identify the sources responsible for the water quality of the river. Three Varifactors were obtained after varimax rotation of initial principal components using principal component analysis. Cluster analysis was carried out to classify sampling stations of certain similarity, which grouped eight different sites into two clusters. The study reveals that the anthropogenic influence (municipal, industrial, waste water and agricultural runoff) was the major source of river water pollution. Thus, this study illustrates the utility of multivariate statistical techniques for analysis and elucidation of multifaceted data sets, recognition of pollution sources/factors and understanding temporal/spatial variations in water quality for effective river water quality management.

Keywords: cluster analysis, multivariate statistical techniques, river Hindon, water quality

Procedia PDF Downloads 344
20947 Some Issues with Extension of an HPC Cluster

Authors: Pil Seong Park

Abstract:

Homemade HPC clusters are widely used in many small labs, because they are easy to build and cost-effective. Even though incremental growth is an advantage of clusters, it results in heterogeneous systems anyhow. Instead of adding new nodes to the cluster, we can extend clusters to include some other Internet servers working independently on the same LAN, so that we can make use of their idle times, especially during the night. However extension across a firewall raises some security problems with NFS. In this paper, we propose a method to solve such a problem using SSH tunneling, and suggest a modified structure of the cluster that implements it.

Keywords: extension of HPC clusters, security, NFS, SSH tunneling

Procedia PDF Downloads 314
20946 Critical Psychosocial Risk Treatment for Engineers and Technicians

Authors: R. Berglund, T. Backström, M. Bellgran

Abstract:

This study explores how management addresses psychosocial risks in seven teams of engineers and technicians in the midst of the fourth industrial revolution. The sample is from an ongoing quasi-experiment about psychosocial risk management in a manufacturing company in Sweden. Each of the seven teams belongs to one of two clusters: a positive cluster or a negative cluster. The positive cluster reports a significantly positive change in psychosocial risk levels between two time-points and the negative cluster reports a significantly negative change. The data are collected using semi-structured interviews. The results of the computer aided thematic analysis show that there are more differences than similarities when comparing the risk treatment actions taken between the two clusters. Findings show that the managers in the positive cluster use more enabling actions that foster and support formal and informal relationship building. In contrast, managers that use less enabling actions hinder the development of positive group processes and contribute negative changes in psychosocial risk levels. This exploratory study sheds some light on how management can influence significant positive and negative changes in psychosocial risk levels during a risk management process.

Keywords: group process model, risk treatment, risk management, psychosocial

Procedia PDF Downloads 36
20945 Some Results on Cluster Synchronization

Authors: Shahed Vahedi, Mohd Salmi Md Noorani

Abstract:

This paper investigates cluster synchronization phenomena between community networks. We focus on the situation where a variety of dynamics occur in the clusters. In particular, we show that different synchronization states simultaneously occur between the networks. The controller is designed having an adaptive control gain, and theoretical results are derived via Lyapunov stability. Simulations on well-known dynamical systems are provided to elucidate our results.

Keywords: cluster synchronization, adaptive control, community network, simulation

Procedia PDF Downloads 376
20944 Evaluation of Yield and Yield Components of Malaysian Palm Oil Board-Senegal Oil Palm Germplasm Using Multivariate Tools

Authors: Khin Aye Myint, Mohd Rafii Yusop, Mohd Yusoff Abd Samad, Shairul Izan Ramlee, Mohd Din Amiruddin, Zulkifli Yaakub

Abstract:

The narrow base of genetic is the main obstacle of breeding and genetic improvement in oil palm industry. In order to broaden the genetic bases, the Malaysian Palm Oil Board has been extensively collected wild germplasm from its original area of 11 African countries which are Nigeria, Senegal, Gambia, Guinea, Sierra Leone, Ghana, Cameroon, Zaire, Angola, Madagascar, and Tanzania. The germplasm collections were established and maintained as a field gene bank in Malaysian Palm Oil Board (MPOB) Research Station in Kluang, Johor, Malaysia to conserve a wide range of oil palm genetic resources for genetic improvement of Malaysian oil palm industry. Therefore, assessing the performance and genetic diversity of the wild materials is very important for understanding the genetic structure of natural oil palm population and to explore genetic resources. Principal component analysis (PCA) and Cluster analysis are very efficient multivariate tools in the evaluation of genetic variation of germplasm and have been applied in many crops. In this study, eight populations of MPOB-Senegal oil palm germplasm were studied to explore the genetic variation pattern using PCA and cluster analysis. A total of 20 yield and yield component traits were used to analyze PCA and Ward’s clustering using SAS 9.4 version software. The first four principal components which have eigenvalue >1 accounted for 93% of total variation with the value of 44%, 19%, 18% and 12% respectively for each principal component. PC1 showed highest positive correlation with fresh fruit bunch (0.315), bunch number (0.321), oil yield (0.317), kernel yield (0.326), total economic product (0.324), and total oil (0.324) while PC 2 has the largest positive association with oil to wet mesocarp (0.397) and oil to fruit (0.458). The oil palm population were grouped into four distinct clusters based on 20 evaluated traits, this imply that high genetic variation existed in among the germplasm. Cluster 1 contains two populations which are SEN 12 and SEN 10, while cluster 2 has only one population of SEN 3. Cluster 3 consists of three populations which are SEN 4, SEN 6, and SEN 7 while SEN 2 and SEN 5 were grouped in cluster 4. Cluster 4 showed the highest mean value of fresh fruit bunch, bunch number, oil yield, kernel yield, total economic product, and total oil and Cluster 1 was characterized by high oil to wet mesocarp, and oil to fruit. The desired traits that have the largest positive correlation on extracted PCs could be utilized for the improvement of oil palm breeding program. The populations from different clusters with the highest cluster means could be used for hybridization. The information from this study can be utilized for effective conservation and selection of the MPOB-Senegal oil palm germplasm for the future breeding program.

Keywords: cluster analysis, genetic variability, germplasm, oil palm, principal component analysis

Procedia PDF Downloads 45
20943 Feature Selection of Personal Authentication Based on EEG Signal for K-Means Cluster Analysis Using Silhouettes Score

Authors: Jianfeng Hu

Abstract:

Personal authentication based on electroencephalography (EEG) signals is one of the important field for the biometric technology. More and more researchers have used EEG signals as data source for biometric. However, there are some disadvantages for biometrics based on EEG signals. The proposed method employs entropy measures for feature extraction from EEG signals. Four type of entropies measures, sample entropy (SE), fuzzy entropy (FE), approximate entropy (AE) and spectral entropy (PE), were deployed as feature set. In a silhouettes calculation, the distance from each data point in a cluster to all another point within the same cluster and to all other data points in the closest cluster are determined. Thus silhouettes provide a measure of how well a data point was classified when it was assigned to a cluster and the separation between them. This feature renders silhouettes potentially well suited for assessing cluster quality in personal authentication methods. In this study, “silhouettes scores” was used for assessing the cluster quality of k-means clustering algorithm is well suited for comparing the performance of each EEG dataset. The main goals of this study are: (1) to represent each target as a tuple of multiple feature sets, (2) to assign a suitable measure to each feature set, (3) to combine different feature sets, (4) to determine the optimal feature weighting. Using precision/recall evaluations, the effectiveness of feature weighting in clustering was analyzed. EEG data from 22 subjects were collected. Results showed that: (1) It is possible to use fewer electrodes (3-4) for personal authentication. (2) There was the difference between each electrode for personal authentication (p<0.01). (3) There is no significant difference for authentication performance among feature sets (except feature PE). Conclusion: The combination of k-means clustering algorithm and silhouette approach proved to be an accurate method for personal authentication based on EEG signals.

Keywords: personal authentication, K-mean clustering, electroencephalogram, EEG, silhouettes

Procedia PDF Downloads 189
20942 Creation of Greater Mekong Subregion Regional Competitiveness through Cluster Mapping

Authors: Danuvasin Charoen

Abstract:

This research investigates cluster development in the area called the Greater Mekong Subregion (GMS), which consists of Thailand, the People’s Republic of China (PRC), the Yunnan Province and Guangxi Zhuang Autonomous Region, Myanmar, the Lao People’s Democratic Republic (Lao PDR), Cambodia, and Vietnam. The study utilized Porter’s competitiveness theory and the cluster mapping approach to analyze the competitiveness of the region. The data collection consists of interviews, focus groups, and the analysis of secondary data. The findings identify some evidence of cluster development in the GMS; however, there is no clear indication of collaboration among the components in the clusters. GMS clusters tend to be stand-alone. The clusters in Vietnam, Lao PDR, Myanmar, and Cambodia tend to be labor intensive, whereas the clusters in Thailand and the PRC (Yunnan) have the potential to successfully develop into innovative clusters. The collaboration and integration among the clusters in the GMS area are promising, though it could take a long time. The most likely relationship between the GMS countries could be, for example, suppliers of the low-end, labor-intensive products will be located in the low income countries such as Myanmar, Lao PDR, and Cambodia, and these countries will be providing input materials for innovative clusters in the middle income countries such as Thailand and the PRC.

Keywords: cluster, GMS, competitiveness, development

Procedia PDF Downloads 163
20941 Collocation Assessment between GEO and GSO Satellites

Authors: A. E. Emam, M. Abd Elghany

Abstract:

The change in orbit evolution between collocated satellites (X, Y) inside +/-0.09 ° E/W and +/- 0.07 ° N/S cluster, after one of these satellites is placed in an inclined orbit (satellite X) and the effect of this change in the collocation safety inside the cluster window has been studied and evaluated. Several collocation scenarios had been studied in order to adjust the location of both satellites inside their cluster to maximize the separation between them and safe the mission.

Keywords: satellite, GEO, collocation, risk assessment

Procedia PDF Downloads 226