Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 117

# Search results for: fractional k-factor

##### 117 Notes on Fractional k-Covered Graphs

Authors: Sizhong Zhou, Yang Xu

Abstract:

A graph G is fractional k-covered if for each edge e of G, there exists a fractional k-factor h, such that h(e) = 1. If k = 2, then a fractional k-covered graph is called a fractional 2-covered graph. The binding number bind(G) is defined as follows, bind(G) = min{|NG(X)| |X| : ├ÿ = X Ôèå V (G),NG(X) = V (G)}. In this paper, it is proved that G is fractional 2-covered if δ(G) ≥ 4 and bind(G) > 5 3 . Downloads 1047
##### 116 On Fractional (k,m)-Deleted Graphs with Constrains Conditions

Authors: Sizhong Zhou, Hongxia Liu

Abstract:

Let G be a graph of order n, and let k  2 and m  0 be two integers. Let h : E(G)  [0, 1] be a function. If e∋x h(e) = k holds for each x  V (G), then we call G[Fh] a fractional k-factor of G with indicator function h where Fh = {e  E(G) : h(e) > 0}. A graph G is called a fractional (k,m)-deleted graph if there exists a fractional k-factor G[Fh] of G with indicator function h such that h(e) = 0 for any e  E(H), where H is any subgraph of G with m edges. In this paper, it is proved that G is a fractional (k,m)-deleted graph if (G)  k + m + m k+1 , n  4k2 + 2k − 6 + (4k 2 +6k−2)m−2 k−1 and max{dG(x), dG(y)}  n 2 for any vertices x and y of G with dG(x, y) = 2. Furthermore, it is shown that the result in this paper is best possible in some sense.

##### 115 A Neighborhood Condition for Fractional k-deleted Graphs

Authors: Sizhong Zhou, Hongxia Liu

Abstract:

Abstract–Let k ≥ 3 be an integer, and let G be a graph of order n with n ≥ 9k +3- 42(k - 1)2 + 2. Then a spanning subgraph F of G is called a k-factor if dF (x) = k for each x ∈ V (G). A fractional k-factor is a way of assigning weights to the edges of a graph G (with all weights between 0 and 1) such that for each vertex the sum of the weights of the edges incident with that vertex is k. A graph G is a fractional k-deleted graph if there exists a fractional k-factor after deleting any edge of G. In this paper, it is proved that G is a fractional k-deleted graph if G satisfies δ(G) ≥ k + 1 and |NG(x) ∪ NG(y)| ≥ 1 2 (n + k - 2) for each pair of nonadjacent vertices x, y of G.

##### 114 Fractional Masks Based On Generalized Fractional Differential Operator for Image Denoising

Authors: Hamid A. Jalab, Rabha W. Ibrahim

Abstract:

This paper introduces an image denoising algorithm based on generalized Srivastava-Owa fractional differential operator for removing Gaussian noise in digital images. The structures of nxn fractional masks are constructed by this algorithm. Experiments show that, the capability of the denoising algorithm by fractional differential-based approach appears efficient to smooth the Gaussian noisy images for different noisy levels. The denoising performance is measured by using peak signal to noise ratio (PSNR) for the denoising images. The results showed an improved performance (higher PSNR values) when compared with standard Gaussian smoothing filter.

##### 113 Fractional Order Feedback Control of a Ball and Beam System

Authors: Santosh Kr. Choudhary

Abstract:

In this paper, fractional order feedback control of a ball beam model is investigated. The ball beam model is a particular example of the double Integrator system having strongly nonlinear characteristics and unstable dynamics which make the control of such system a challenging task. Most of the work in fractional order control systems are in theoretical nature and controller design and its implementation in practice is very small. In this work, a successful attempt has been made to design a fractional order PIλDμcontroller for a benchmark laboratory ball and beam model. Better performance can be achieved using a fractional order PID controller and it is demonstrated through simulations results with a comparison to the classic PID controller.

##### 112 Derivation of Fractional Black-Scholes Equations Driven by Fractional G-Brownian Motion and Their Application in European Option Pricing

Authors: Changhong Guo, Shaomei Fang, Yong He

Abstract:

In this paper, fractional Black-Scholes models for the European option pricing were established based on the fractional G-Brownian motion (fGBm), which generalizes the concepts of the classical Brownian motion, fractional Brownian motion and the G-Brownian motion, and that can be used to be a tool for considering the long range dependence and uncertain volatility for the financial markets simultaneously. A generalized fractional Black-Scholes equation (FBSE) was derived by using the Taylor’s series of fractional order and the theory of absence of arbitrage. Finally, some explicit option pricing formulas for the European call option and put option under the FBSE were also solved, which extended the classical option pricing formulas given by F. Black and M. Scholes. Downloads 607
##### 111 Existence of Iterative Cauchy Fractional Differential Equation

Authors: Rabha W. Ibrahim

Abstract:

Our main aim in this paper is to use the technique of non expansive operators to more general iterative and non iterative fractional differential equations (Cauchy type ). The non integer case is taken in sense of Riemann-Liouville fractional operators. Applications are illustrated.

##### 110 Stability of Interval Fractional-order Systems with Order 0 < α < 1

Authors: Hong Li, Shou-ming Zhong, Hou-biao Li

Abstract:

In this paper, some brief sufficient conditions for the stability of FO-LTI systems dαx(t) dtα = Ax(t) with the fractional order are investigated when the matrix A and the fractional order α are uncertain or both α and A are uncertain, respectively. In addition, we also relate the stability of a fractional-order system with order 0 < α ≤ 1 to the stability of its equivalent fractional-order system with order 1 ≤ β < 2, the relationship between α and β is presented. Finally, a numeric experiment is given to demonstrate the effectiveness of our results.

##### 109 Relation between Roots and Tangent Lines of Function in Fractional Dimensions: A Method for Optimization Problems

Authors: Ali Dorostkar

Abstract:

In this paper, a basic schematic of fractional dimensional optimization problem is presented. As will be shown, a method is performed based on a relation between roots and tangent lines of function in fractional dimensions for an arbitrary initial point. It is shown that for each polynomial function with order N at least N tangent lines must be existed in fractional dimensions of 0 < α < N+1 which pass exactly through the all roots of the proposed function. Geometrical analysis of tangent lines in fractional dimensions is also presented to clarify more intuitively the proposed method. Results show that with an appropriate selection of fractional dimensions, we can directly find the roots. Method is presented for giving a different direction of optimization problems by the use of fractional dimensions.

##### 108 Lyapunov Type Inequalities for Fractional Impulsive Hamiltonian Systems

Authors: Kazem Ghanbari, Yousef Gholami

Abstract:

This paper deals with study about fractional order impulsive Hamiltonian systems and fractional impulsive Sturm-Liouville type problems derived from these systems. The main purpose of this paper devotes to obtain so called Lyapunov type inequalities for mentioned problems. Also, in view point on applicability of obtained inequalities, some qualitative properties such as stability, disconjugacy, nonexistence and oscillatory behaviour of fractional Hamiltonian systems and fractional Sturm-Liouville type problems under impulsive conditions will be derived. At the end, we want to point out that for studying fractional order Hamiltonian systems, we will apply recently introduced fractional Conformable operators. Downloads 1412
##### 107 Application of Fractional Model Predictive Control to Thermal System

Authors: Aymen Rhouma, Khaled Hcheichi, Sami Hafsi

Abstract:

The article presents an application of Fractional Model Predictive Control (FMPC) to a fractional order thermal system using Controlled Auto Regressive Integrated Moving Average (CARIMA) model obtained by discretization of a continuous fractional differential equation. Moreover, the output deviation approach is exploited to design the K -step ahead output predictor, and the corresponding control law is obtained by solving a quadratic cost function. Experiment results onto a thermal system are presented to emphasize the performances and the effectiveness of the proposed predictive controller.

##### 106 Realization of Fractional-Order Capacitors with Field-Effect Transistors

Authors: Steve Hung-Lung Tu, Yu-Hsuan Cheng

Abstract:

A novel and efficient approach to realize fractional-order capacitors is investigated in this paper. Meanwhile, a new approach which is more efficient for semiconductor implementation of fractional-order capacitors is proposed. The feasibility of the approach has been verified with the preliminary measured results. Downloads 3046
##### 105 Observer Based Control of a Class of Nonlinear Fractional Order Systems using LMI

Abstract:

Design of an observer based controller for a class of fractional order systems has been done. Fractional order mathematics is used to express the system and the proposed observer. Fractional order Lyapunov theorem is used to derive the closed-loop asymptotic stability. The gains of the observer and observer based controller are derived systematically using the linear matrix inequality approach. Finally, the simulation results demonstrate validity and effectiveness of the proposed observer based controller. Downloads 2539
##### 104 A Design of Fractional-Order PI Controller with Error Compensation

Abstract:

Fractional-order controller was proven to perform better than the integer-order controller. However, the absence of a pole at origin produced marginal error in fractional-order control system. This study demonstrated the enhancement of the fractionalorder PI over the integer-order PI in a steam temperature control. The fractional-order controller was cascaded with an error compensator comprised of a very small zero and a pole at origin to produce a zero steady-state error for the closed-loop system. Some modification on the error compensator was suggested for different order fractional integrator that can improve the overall phase margin.

##### 103 Some Remarks About Riemann-Liouville and Caputo Impulsive Fractional Calculus

Authors: M. De la Sen

Abstract:

This paper establishes some closed formulas for Riemann- Liouville impulsive fractional integral calculus and also for Riemann- Liouville and Caputo impulsive fractional derivatives. Downloads 1342
##### 102 Oil Displacement by Water in Hauterivian Sandstone Reservoir of Kashkari Oil Field

Authors: A. J. Nazari, S. Honma

Abstract:

This paper evaluates oil displacement by water in Hauterivian sandstone reservoir of Kashkari oil field in North of Afghanistan. The core samples of this oil field were taken out from well No-21st, and the relative permeability and fractional flow are analyzed. Steady state flow laboratory experiments are performed to empirically obtain the fractional flow curves and relative permeability in different water saturation ratio. The relative permeability represents the simultaneous flow behavior in the reservoir. The fractional flow approach describes the individual phases as fractional of the total flow. The fractional flow curve interprets oil displacement by water, and from the tangent of fractional flow curve can find out the average saturation behind the water front flow saturation. Therefore, relative permeability and fractional flow curves are suitable for describing the displacement of oil by water in a petroleum reservoir. The effects of irreducible water saturation, residual oil saturation on the displaceable amount of oil are investigated through Buckley-Leveret analysis.

##### 101 An Efficient Hamiltonian for Discrete Fractional Fourier Transform

Abstract:

Fractional Fourier Transform, which is a generalization of the classical Fourier Transform, is a powerful tool for the analysis of transient signals. The discrete Fractional Fourier Transform Hamiltonians have been proposed in the past with varying degrees of correlation between their eigenvectors and Hermite Gaussian functions. In this paper, we propose a new Hamiltonian for the discrete Fractional Fourier Transform and show that the eigenvectors of the proposed matrix has a higher degree of correlation with the Hermite Gaussian functions. Also, the proposed matrix is shown to give better Fractional Fourier responses with various transform orders for different signals. Downloads 1424
##### 100 Lower Bound of Time Span Product for a General Class of Signals in Fractional Fourier Domain

Abstract:

Fractional Fourier Transform is a generalization of the classical Fourier Transform which is often symbolized as the rotation in time- frequency plane. Similar to the product of time and frequency span which provides the Uncertainty Principle for the classical Fourier domain, there has not been till date an Uncertainty Principle for the Fractional Fourier domain for a generalized class of finite energy signals. Though the lower bound for the product of time and Fractional Fourier span is derived for the real signals, a tighter lower bound for a general class of signals is of practical importance, especially for the analysis of signals containing chirps. We hence formulate a mathematical derivation that gives the lower bound of time and Fractional Fourier span product. The relation proves to be utmost importance in taking the Fractional Fourier Transform with adaptive time and Fractional span resolutions for a varied class of complex signals.

##### 99 Perturbation in the Fractional Fourier Span due to Erroneous Transform Order and Window Function

Abstract:

Fractional Fourier Transform is a generalization of the classical Fourier Transform. The Fractional Fourier span in general depends on the amplitude and phase functions of the signal and varies with the transform order. However, with the development of the Fractional Fourier filter banks, it is advantageous in some cases to have different transform orders for different filter banks to achieve better decorrelation of the windowed and overlapped time signal. We present an expression that is useful for finding the perturbation in the Fractional Fourier span due to the erroneous transform order and the possible variation in the window shape and length. The expression is based on the dependency of the time-Fractional Fourier span Uncertainty on the amplitude and phase function of the signal. We also show with the help of the developed expression that the perturbation of span has a varying degree of sensitivity for varying degree of transform order and the window coefficients. Downloads 1367
##### 98 Quality Factor Variation with Transform Order in Fractional Fourier Domain

Abstract:

Fractional Fourier Transform is a powerful tool, which is a generalization of the classical Fourier Transform. This paper provides a mathematical relation relating the span in Fractional Fourier domain with the amplitude and phase functions of the signal, which is further used to study the variation of quality factor with different values of the transform order. It is seen that with the increase in the number of transients in the signal, the deviation of average Fractional Fourier span from the frequency bandwidth increases. Also, with the increase in the transient nature of the signal, the optimum value of transform order can be estimated based on the quality factor variation, and this value is found to be very close to that for which one can obtain the most compact representation. With the entire mathematical analysis and experimentation, we consolidate the fact that Fractional Fourier Transform gives more optimal representations for a number of transform orders than Fourier transform. Downloads 1134
##### 97 Operational Representation of Certain Hypergeometric Functions by Means of Fractional Derivatives and Integrals

Abstract:

The investigation in the present paper is to obtain certain types of relations for the well known hypergeometric functions by employing the technique of fractional derivative and integral.

##### 96 Effect of Fractional Flow Curves on the Heavy Oil and Light Oil Recoveries in Petroleum Reservoirs

Authors: Abdul Jamil Nazari, Shigeo Honma

Abstract:

This paper evaluates and compares the effect of fractional flow curves on the heavy oil and light oil recoveries in a petroleum reservoir. Fingering of flowing water is one of the serious problems of the oil displacement by water and another problem is the estimation of the amount of recover oil from a petroleum reservoir. To address these problems, the fractional flow of heavy oil and light oil are investigated. The fractional flow approach treats the multi-phases flow rate as a total mixed fluid and then describes the individual phases as fractional of the total flow. Laboratory experiments are implemented for two different types of oils, heavy oil, and light oil, to experimentally obtain relative permeability and fractional flow curves. Application of the light oil fractional curve, which exhibits a regular S-shape, to the water flooding method showed that a large amount of mobile oil in the reservoir is displaced by water injection. In contrast, the fractional flow curve of heavy oil does not display an S-shape because of its high viscosity. Although the advance of the injected waterfront is faster than in light oil reservoirs, a significant amount of mobile oil remains behind the waterfront.

##### 95 Group Invariant Solutions of Nonlinear Time-Fractional Hyperbolic Partial Differential Equation

Abstract:

In this paper, we have investigated the nonlinear time-fractional hyperbolic partial differential equation (PDE) for its symmetries and invariance properties. With the application of this method, we have tried to reduce it to time-fractional ordinary differential equation (ODE) which has been further studied for exact solutions. Downloads 1034
##### 94 Stability Analysis of Fractional Order Systems with Time Delay

Authors: Hong Li, Shou-Ming Zhong, Hou-Biao Li

Abstract:

In this paper, we mainly study the stability of linear and interval linear fractional systems with time delay. By applying the characteristic equations, a necessary and sufficient stability condition is obtained firstly, and then some sufficient conditions are deserved. In addition, according to the equivalent relationship of fractional order systems with order 0 < α ≤ 1 and with order 1 ≤ β < 2, one may get more relevant theorems. Finally, two examples are provided to demonstrate the effectiveness of our results.

##### 93 Backstepping Design and Fractional Derivative Equation of Chaotic System

Authors: Ayub Khan, Net Ram Garg, Geeta Jain

Abstract:

In this paper, Backstepping method is proposed to synchronize two fractional-order systems. The simulation results show that this method can effectively synchronize two chaotic systems.

##### 92 Finite-time Stability Analysis of Fractional-order with Multi-state Time Delay

Authors: Liqiong Liu, Shouming Zhong

Abstract:

In this paper, the finite-time stabilization of a class of multi-state time delay of fractional-order system is proposed. First, we define finite-time stability with the fractional-order system. Second, by using Generalized Gronwall's approach and the methods of the inequality, we get some conditions of finite-time stability for the fractional system with multi-state delay. Finally, a numerical example is given to illustrate the result.

##### 91 Numerical Solution of Volterra Integro-differential Equations of Fractional Order by Laplace Decomposition Method

Authors: Changqing Yang, Jianhua Hou

Abstract:

In this paper the Laplace Decomposition method is developed to solve linear and nonlinear fractional integro- differential equations of Volterra type.The fractional derivative is described in the Caputo sense.The Laplace decomposition method is found to be fast and accurate.Illustrative examples  are included to demonstrate the validity and applicability of presented technique and comparasion is made with exacting results.

##### 90 Stability of Fractional Differential Equation

Authors: Rabha W. Ibrahim

Abstract:

We study a Dirichlet boundary value problem for Lane-Emden equation involving two fractional orders. Lane-Emden equation has been widely used to describe a variety of phenomena in physics and astrophysics, including aspects of stellar structure, the thermal history of a spherical cloud of gas, isothermal gas spheres,and thermionic currents. However, ordinary Lane-Emden equation does not provide the correct description of the dynamics for systems in complex media. In order to overcome this problem and describe dynamical processes in a fractalmedium, numerous generalizations of Lane-Emden equation have been proposed. One such generalization replaces the ordinary derivative by a fractional derivative in the Lane-Emden equation. This gives rise to the fractional Lane-Emden equation with a single index. Recently, a new type of Lane-Emden equation with two different fractional orders has been introduced which provides a more flexible model for fractal processes as compared with the usual one characterized by a single index. The contraction mapping principle and Krasnoselskiis fixed point theorem are applied to prove the existence of solutions of the problem in a Banach space. Ulam-Hyers stability for iterative Cauchy fractional differential equation is defined and studied.

##### 89 Synthesis of Digital Circuits with Genetic Algorithms: A Fractional-Order Approach

Abstract:

This paper analyses the performance of a genetic algorithm using a new concept, namely a fractional-order dynamic fitness function, for the synthesis of combinational logic circuits. The experiments reveal superior results in terms of speed and convergence to achieve a solution.