**Commenced**in January 2007

**Frequency:**Monthly

**Edition:**International

**Paper Count:**30135

##### Group Invariant Solutions of Nonlinear Time-Fractional Hyperbolic Partial Differential Equation

**Authors:**
Anupma Bansal,
Rajeev Budhiraja,
Manoj Pandey

**Abstract:**

**Keywords:**
Nonlinear time-fractional hyperbolic PDE,
Lie
Classical method,
exact solutions.

**Digital Object Identifier (DOI):**
doi.org/10.5281/zenodo.1129620

**References:**

[1] K.S. Miller, B. Ross, An Introduction to Fractional Calculus and Fractional Differential Equations, Wiley, New York, 1993.

[2] A.A. Kilbas, H.M. Srivastava, J.J. Trujillo, Theory and Applications of Frcational Differential Equations, Elsevier, San Diego, 2006.

[3] P.J. Olver, Applications of Lie Groups to Differential Equations, Graduate Texts Math., vol. 107, 1993.

[4] G.W. Bluman, J.D. Cole, Similarity Methods for Differential Equations, Springer Verlag, 1974.

[5] L.V. Ovsiannikov, Group Analysis of Differential Equations, Academic Press, 1982.

[6] Q. Huang, R. Zhdanov, Symmetries and Exact Solutions of the Time Fractional Harry-Dym Equation with Riemann-Liouville Derivative, Physica A, vol. 409, 2014, pp. 110-118.

[7] K. Al-Khaled, Numerical Solution of Time-fractional PDEs Using Sumudu Decomposition Method, Romanian Journal of Physics, vol. 60, 2015, pp. 99-110.

[8] Y. Zhang, Lie Symmetry Analysis to General Time-Fractional Korteweg-De Vries Equation, Fractional Differential Calculus, vol.5, 2015, pp. 125-135.

[9] V.D. Djordjevic, T.M. Atanackovic, Similarity Solutions to Nonlinear Heat Conduction and Burgers/Korteweg-De Vries Fractional Equations, Journal of Computational Applied Mathematics, vol. 222, 2008, pp. 701-714.

[10] M. Gaur, K. Singh, On Group Invariant Solutions of Fractional Order Burgers-Poisson Equation, Applied Mathematics and Computation, vol. 244, 2014, pp. 870-877.

[11] H. Liu, J. Li, Q. Zhang, Lie Symmetry Analysis and Exact Explicit Solutions for General Burgers Equations, Journal of Computational Applied Mathematics, vol. 228, 2009, pp. 1-9.

[12] H. Liu, Complete Group Classifications and Symmetry Reductions of the Fractional fifth-order KdV Types of Equations, Studies in Applied Mathematics, vol. 131, 2013, pp. 317-330.

[13] A. Bansal, R.K. Gupta, Lie point Symmetries and Similarity Solutions of the Time-Dependent Coefficients Calogero-Degasperis Equation, Physica Scripta, vol. 86, 2012, pp. 035005 (11 pages).

[14] A. Bansal, R.K. Gupta, Modified (G'/G)-Expansion Method for Finding Exact Wave Solutions of Klein-Gordon-Schrodinger Equation, Mathematical Methods in the Applied Sciences, vol. 35, 2012, pp. 1175-1187.

[15] R.K. Gupta, A. Bansal, Painleve Analysis, Lie Symmetries and Invariant Solutions of potential Kadomstev Petviashvili Equation with Time Dependent Coefficients, Applied Mathematics and Computation, vol. 219, 2013, pp. 5290-5302.

[16] R. Kumar, R.K. Gupta, S.S. Bhatia, Lie Symmetry Analysis and Exact Solutions for Variable Coefficients Generalised Kuramoto-Sivashinky Equation, Romanian Reports in Physics, vol. 66, 2014, pp. 923-928.

[17] M. Pandey, Lie Symmetries and Exact Solutions of Shallow Water Equations with Variable Bottom, Internation Journal of Nonlinear Science and Numerical Simulation, vol. 16, 2015, pp. 337-342.

[18] V.S. Kiryakova, Generalized Fractional Calculus and Applications, CRC press,1993.