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Stability of Interval Fractional-order systems with
order 0 < a < 1
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Abstract—In this paper, some brief sufficient conditions for the
stability of FO-LTI systems d(;f(it) = Axz(t) with the fractional
order are investigated when the matrix A and the fractional order
« are uncertain or both o and A are uncertain, respectively. In
addition, we also relate the stability of a fractional-order system with
order 0 < a < 1 to the stability of its equivalent fractional-order
system with order 1 < 8 < 2, the relationship between « and S is
presented. Finally, a numeric experiment is given to demonstrate the
effectiveness of our results.

Keywords—Interval Fractional-order systems, Linear matrix in-
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I. INTRODUCTION

ECENTLY, fractional-order systems have gained consid-

erable importance mainly due to the following two facts.
First, fractional derivatives provide an excellent instrument for
the description of memory and hereditary properties of various
materials and processes, such as dielectric [1], electrode-
electrolyte polarization [2] and electromagnetic wave [3]. The
advantages of the fractional-order systems are that we have
more degrees of freedom in the model and that a memory is in-
cluded in the model. Second, fractional-order controllers such
as CRONE controller [4], TID controller [5] and fractional
PID controller [6] have so far been implemented to enhance
the robustness and the performance of the closed loop control
system.

The problem of stability is a very essential and crucial
issue for control systems certainly including fractional-order
systems [10], [19]. Stability of a linear fractional-order system
depends on the location of the system poles in the complex.
For commensurate fractional-order systems, powerful criteria
have been proposed. The most well known is the Matignon’s
stability theorem [7]. It permits us to check the system
stability through the location in the complex plane of the
dynamic matrix eigenvalues of the state space like system
representation. Matignon’s theorem is the starting point of
several results in the field.

Recently, LMI approach [8], [9], [10], Lyapunov approach
[11], [12] and Lambert W function approach [13], [14] have
been used to investigate the stability of FO-LTI systems. Using
LMI approach and Laplace transform, sufficient conditions are
proposed in [9] for stability of FO-LTI system d;f(st) = Ax(t)
with fractional order 0 < a <1 and 1 < a < 2, respectively.
According to [9], J.G. Lu and Y.Q. Chen ([10]) proposed
sufficient conditions for robust stability and stabilization of
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interval FO-LTI systems by using the LMI approach. The
paper [15] also investigated stability of FO-LTI systems by
finding a linear time invariant system with integer order that
has equivalently the same stability property as of the FO-LTI
system. But, until now, only a few LMI stability conditions
(one of which was given in [10]) were proposed for the
stability of FO-LTI system with fractional order 0 < o < 1.

In this paper, the stability of system d;fit) = Ax(t) is
investigated. It is organized as follows. In Section 2, the
problem formulation and some preliminaries are presented.
The main results are derived in Section 3. We first presents
a_sufficient condition for the stability of FO-LTI system
d dfit) = Ax(t) with the fractional order when the matrix
A is uncertain. Our condition is more briefer than the paper
[10], and then some sufficient stability conditions for the same
system are derived when the fractional order « is uncertain and
when both « and A are uncertain, respectively. In Section 4, a
numeric experiment are given to demonstrate the effectiveness
of our results.

II. PROBLEM FORMULATION AND PRELIMINARIES

The differ-integral operator, denoted by , Dy, is a combined
differentiation and integration operator commonly used in
fractional calculus which is defined by

;Tiw a>0
D= 1, a=0

[I(dr)~*, a<o.

There are different definitions for fractional derivatives
[16]. The most commonly used definitions are the Griinwald-
Letnikov, Riemann-Liouville and Caputo definitions. The Ca-
puto definition is sometimes called smooth fractional deriva-
tive in literature because it is suitable to be treated by the
Laplace transform technique, while the Riemann-Liouville
definition is unsuitable.

In the rest of the paper, D® is used to denote the Caputo
fractional derivative of order «

drfit) 1 b
dt*  T'(a—m) /0 (t —r)atl-m

where m is an integer satisfying m — 1 < a < m. This
paper mainly focuses on the case that the fractional order is
O<a<l.

Next, consider the FO-LTI system described by the follow-
ing form

Def(t) = dr (1)

dex(t)
dte

= Au(t) 2
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where « is the fractional commensurate order, x(t) € R”
denotes the state vector, A € R™*" is the system matrix.

If the matrix A is uncertain, then the FO-LTI system (2)
can be described by state space equation of the form

d*x(t)
dte
where A € [A™, AM] = {[ai;] :
i,j <n}
If the fractional commensurate order « is uncertain, then

the FO-LTI system (2) can be described by the state space
equation of the form

= Aux(t) 3)

m M
a™i; <a; < a1l <

d*x(t)
dt>
where « € [ag, ag, a1, a0 € R.
If there are some coupling relationships in FO-LTI inter-
val system, the perturbation of model parameters A can be
considered as a function of variable . Therefore, the FO-LTI

interval system can be described by state space equation of
the form ([17])

= Ax(t) “

dootBag(y
Wai) = [Ag + k(ag + Aa)AA]z(t) (5)
where Ay = A;Z,Oz € Jar,az],an,00 € Ry =

(orton) Aq -

(az—0u1)
5
Next, to prove the main results in the next section, we need

the following lemmas.
Lemma 2.1 ([7]). Autonomous system

Dx(t) = Ax(t) (6)

with z(tp) = xg and 0 < a < 2 is asymptotically stable if and
only if |arg(spec(A))| > a7, where spec(A) is the spectrum
(the set of all eigenvalues)of A. Also the state vector x(t)
decays towards 0 and meets the following condition: ||z (¢)|| <
Nt=@ t>0,a > 0.

Lemma 2.2 ([10]). For any matrix X and Y with appro-
priate dimensions, we have

XTY +YTX <eXTX + YTy, for any ¢ > 0.

Lemma 2.3 ([10]). Let X, Y, F' be real matrices of suitable
dimensions. Then, for any x € R”

max{(xTXFYx)2

Lemma 2.4 ([18]). The FO-LTI systems (2) with order 0 <
a < 1 is asymptotically stable if there exist a matrix X =
H ¢ ¢m*m > 0, such that

FTR <y = (2" XXT2)(2TYTY2).

U2 X +7X) AT+ ArX +7X) <0, (7

where r = ef(1-0) 3

ITII. MAIN RESULTS
A. Stability analysis of systems Eq.(2)-(5) with fractional
order 0 < a <1
LMI have played an important role in control theory since
the early 1960s due to this particular form. The main issue

when dealing with LMI is the convexity of the optimization
set. As the stability domain of a fractional system with order
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1 < a < 21ia a convex set, various LMI methods for defining
such a region have already been developed.

In this section, a new LMI-based sufficient condition for
stability of systems (3) with order 0 < a < 1 and some
sufficient conditions of system (4)-(5) with order 0 < o < 1
are presented. Both our result and the condition in paper [10]
are sufficient condition, but the result in this paper is more
brief than that of [10].

First, for convenience, let us rewrite Lemma 2.5 as follows.

Lemma 3.1. The FO-LTI system (2) with order 0 < o < 1
is asymptotically stable if there exists a real symmetric positive
definite matrix P € R™*" and a real skew-symmetric matrix
Q@ € R™™ such that

P Q
1. [—Q p > 0,
2. ® =sin G (PAT + AP) + cos G (QAT — AQ) <0

®)
Proof: Using Lemma 2.4, we have the system (2) with order
0 < a < 1 is asymptotically stable if and only if

U=0X+7X) AT+ ArX +7X) <0. (9

Let X = P+jQ,P € R™™ @Q € R, X > 0 is equivalent
to the condition 1 in Theorem 3. 1 Substitute the positive
matrix X and r = ¢/1~%3 = gin 2% + jcos % in the left
side of (9), we obtain

¥ = [(sin G +j cos §)(P + Q)"
+(sin 5 —jcos F)(P — JQ)T AT
+A[(Sm S+ Jcos F)(P+jQ)]
+A[(sin G — jcos ) (P = jQ)]
= 2(sin O‘Q—WP + cos O;—”Q)AT + 2A(sin %P — cos G Q)
= 2[sin & (PAT 4+ AP) + cos & (QAT — AQ)).
(10)

So, ¥ < 0 if and only if the condition 2 in Theorem 3.1 holds.
This completes the proof. [J

To deal with the uncertainty interval, we introduce the
following lemma.

Lemma 3.2([19]). The interval matrix A in the system (3)
is equal to

A= {AQ+DAFAEA|FA A<I} (11)
where
Ay = (Am + AM) AA = %(AM —A™) = {7ij}rsem>
A [\/’71 61,' \/71n€?7"'> %1627'“ Tnn€n ]n><n2
A:[\/’Yl ela"'y ’Ylneﬁ,"'yv’)/nl@?y :

me ]rj;zxn’

(12)
and e} € R"(k =1,---,n) denote the column vectors with
the kth element being 1 and all the others being 0.

Next, let us establish a stable result of FO-LTI interval
system (3).

Theorem 3.1. Let A € R and 0 < a < 1. The
fractional-order system (3) is asymptotically stable if there
exist a symmetric positive definite matrix P € R"*", a
skew-symmetric matrix () € R™*™, and two scalar constants
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g; > 0(i = 1,2) such that

A
M, sm—PEA cos—QEA
2. sin —EAP —e11 0 <0,
cos—( E4Q) 0 —eol
(13)
where
Ml—blnf(PAo +A0 )+C057(QA0 AOQ)

+(€1 + EQ)DAD:‘Z.
Proof:Suppose that (11) holds, it follows from Lemma 3.1 that

<I>—sm—( (A0+DAFAEA) (Ao—l—DAFAEA)P)
+CObf(Q(A0+DAFAEA) (A0+DAFAEA)Q)
= sin —(PAT + AgP) + cos & (QAT — AoQ)
+ sin —(PEIEFIZDA + DAFAEAP)
+ cos —(QEXF{DA DAFAEAQ).
(14)
Note that F1 F4 < Lit follows from Lemma 2.2 that for any
real scalars €; > 0(7 = 1, 2)

sin —(PEZ;F};DT + DAFAEAP)
<e1DaADY + Lsin® CPEYELP,

cos *(QE,ZFXDE; DAFAEAQ)
< EQDADA = cos2 an QEZ;EA( Q).

Substituting (15) into (14), one has

15)

P < sin G (PAL + AgP) + cos G (QAL — ApQ)
+(€1 +e9)DaDY + * sin® MPEXEAP
+— cos? ‘”QEZEA( Q)
= M1 — (—£ sin® ST PEYEAP)
—(—2 cos® FQELEA(-Q).

(16)

Using the Schur complement of (16),we have ® < 0 if the
condition 2 in Theorem 3.2 holds. so the inequality (13) is
the sufficient stable condition of system (3). The proof is
completed. [.

Now, let us consider the FO-LTT interval system (4).

Theorem 3.2. Let A € R™"™ and 0 < a < 1. The
fractional-order interval system (4) is asymptotically stable if
there exist a symmetric positive definite matrix P € R™*"
and a skew-symmetric matrix Q € R™*", such that

[_PQ f_?,]>o,

X(ap) = sin®™ (PAT 4+ AP) + cos 3™ (QAT — AQ) < 0
X(1) = pAT { AP <,
X(« )COS(C; jowM ) _ C)f(alo)‘lr sin =% < 0,
a7
where
] — Qg Qg — Qg
Ao =
o= M2 0200 ay,au)
Proof: Define
X(a) = (sm%P+COS*Q)AT+A(Sm7P COS%Q)'
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Substitute o = ap + A« into X (), and then it yields
X(a) = (sin L22H2AT p g oo (2087 () AT
+A(sin (20F2IT p oo (20t B0)T ()

= (sin 297 (PAT + AP) + cos 29 (QAT — AQ)) cos 29T

+(cos 5 agr (PAT + AP) — sin "’0” (QAT — AQ)) sin 29T A‘”
= X(ao) cos 29T + X (ap + 1) sin 297
(18)
Noting that
X(ao)sin% + X(ap + 1)cosa077T = X(1),
we have that
X(1) — X(ap) sin 9™
X(ag+1) = (1) (afl 2 (19)
cos
Substitute (19) into (18), and then it yields
X(a) = X (o) cos 297 + X(M)=X(ao)sin 75~ jf)i(ff’(}:m 5 gin Ao [0
= X(ag )005(0025£ o)y X(alo)w sin 897
(20)

We have that 0 < ap < 1,0 < ap + Aa < 1, and
sin %% > 0,cos %% > 0,—sinay < sinAa < sinayy,
cos(ayg + aM) < cos( 28T + £9T) < cos(ap—ay), such that

(29T 4oz X(1
X(a) = X(Ozo)cob(cozS e S(ao)w sin 297

cos(20T 4 M T X(1
< X (o) (= U Cos(ao)ﬂ sin 4% < 0.

CcOSs 2 (21)

That is, the system (4) is asymptotically stable. 1

Similarly, a stable result of FO-LTI interval system (5) can
be also established.

Theorem 3.3. Let A € R and 0 < a < 1. The
fractional-order interval system (5) is asymptotically stable if
there exist a symmetric positive definite matrix P € R™*",
a skew-symmetric matrix ¢ € R"™*” and four real scalar
constant £; > 0,7 = 1,2, 3,4, such that

P Q
_Q P
[ M, M; My Ms Mg
MI —eI 0 0 0
MI 0 —el 0 0
MI 0 0 —e3l 0

>0,

(22)
<0,

MI 0 0 0 —eld
where
M+M s M
My = Y(Ap,a0) = CEdrt + Y (Ao, 1) S
+(e1+e2+e3+ 64)DAD£,
M3 = kaoPEf, M4 = k}Oé()QE?;,
M5 = ko9 PET My = ks QET,.

Proof. Let Y (A4, «) = sin 7(‘PAT + AP) + cos °F (QAT
AQ). Substitute A = Ay + k(ap + Aa)AA = AO + k(ag +
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Aa)DaFaE 4 into Y (A, «), we obtain that

Y(4,0)
= sin 7( (Ao + k‘CYDAFAEA)

+ 08 G (Q(Ao + kaDsFaEA)T"
= sin —(PAT + AgP) + cos G (QAT — AoQ)
+ sin —(kaPETFTDT + kaDaFaEAP)

+ cos —(kaQEZ;FZ;DT kaDaFaEAQ).

(A() + k‘OéDAFAEA)P)

(23)
Set

Y (Ag, @) = sin G (PAL + AgP) + cos G (QAL — AoQ),
Y(AA, a) =sin —(kaPEgFEDA + kaDsFaEAP)
+ cos L (kaQEL Fi DY — kaDAFAEAQ),

then

Y(A o) =Y (Ap,a) + Y(AA, ). (24)

For Y (Ag, «), substitute o =
Theorem 3.3, we obtain

ap + Aa and according to

Ouy]ﬂ'

cos( 8" 4 < )
cos 0‘2"

sin

3/(,(407 a) S Y(Ao, Oéo) (Ao, 1)

Dt()ﬂ‘ ‘
(25)
For Y (AA, «), substitute o = «g + A, we get

Y(AA, )
= sin & (kaPEYFY DY + kaDsFAEAP)
-+ cos f(kaQEZ;F‘ZDA kaDAFAEAQ)
= sin <ﬂ°+§a>“ kao(PELF DY + DAFAEAP)
+sin QF2OT LA W(PETFT DY + DaFsEAP)
+ cos %kao(QEgFng — DAFAEAQ)
+ cos Lot RAIT N W(QETFT DY — D AFAEAQ).(26)

Using Lemma 2.3, we have

n BT o (PESFT DY + DaFsE4P)
< e1DaFaF} D}; + ey tsin? (2ot (102 PETE, P
< e1DaADY + &7t (kay)?PEYEAP,
sin (LotRIT N (PETFT DY, + DAFAEAP)
g e3DAFAFL DY + e5 1 sin? (20297 (kN0 )2 PETE L P
2
< e3DADY 4 &5 k22 ) pET R, P,
cos (LRI o (QETFT DY — DaFAEAQ)

< eQDAFAFA D£ + &5 ' cos? M(kao)QQEEEA(*Q

< eaDaDY + 5" (kao)?QEYEA(—Q),
<a°+§a>”m (QEiF}DZ{ — DaFAEAQ)

§€4DAFAF DA

terleo QM(kA )QEZ;EA( Q)

< egDaDY 4 ey tp2 2 pon) o) QETEA(-Q).
27)
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— (Ao + kaDAFAE4)Q)

990

Substituting (27) into (24), we obtain
Y(A4,a) =Y (4p,a) + Y(AA, )
< Y(Ao, 00) 2 CEEA) 1Y (4, 1)
+e1DADT 4 23Dy DT 4 £4D 4 DT 4 e4 D4 DT
+e7  (kao)2PEYEAP + &5 ' (kao)?QELEA(-Q)
ey k202 ppT g, p
e k2 QR By (~Q)
= Y(Aoﬂo)% +Y (Ao, 1 )%
+(E1 + 62 +e3+ 84)DADA
—(—e7 Y (kag)2PEYELP
—(=£31)(kao)*QELEA(-Q)
—(—ey Ykl pptE, p
(e e QBT BA(-Q).

(28)
Using the Schur complement of (28), one obtains that the FO-
LTT interval system (5) with order 0 < v < 1 is asymptotically
stable. [

B. Equivalent Of fractional order systems with order 0 < @ <
1 and with order 1 < 8 < 2

In this section, stability relations of a fractional-order system
with order 0 < o < 1 and its equivalent fractional-order
system with order 1 < § < 2 are given, and the relationship
between « and 3 is also presented.

Theorem 3.4. All eigenvalues of the FO-LTI system (2)
with order 0 < « < 1 and output u(t) = 0 settle in the
unstable region if and only if the fractional-order system

dPx(t)

— —Az(t), 1<B=2-a<2  (29)

is asymptotically stable, see Figure 1.

Imag.axis
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T
- e )

>

Fig. 1: Relation of stability domain and unstability domain.

Proof. Since all eigenvalues of the FO-LTI system (2) with
order 0 < a < 1 and output u(t) = 0 lie on the unstable
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region € = {A:|arg(\) < af}, then the eigenvalues of
matrix —A settle in the region

Qy = {)\ s larg(X\) > ﬂ—az} = {)\ targ(X) > (2—04)%}.

2

Set 8 =2 — a, then 1 < 8 < 2. One can rewrite the set {2
as

Qs = {)\ s |larg(N) > 5%}

Therefore, according to Lemma 2.1, the fractional-order sys-
tem (??) is asymptotically. The proof of the inverse is similar
and it is not given here. [J

Remark 3.1: Theorem 3.4 relates the stability of a
fractional-order system with order 0 < o < 1 to the stability
of its equivalent fractional-order system with order 1 < 8 < 2.
Thus, one can obtain some other analogical conclusions on the
order 0 < o < 1 systems, according to the corresponding ones
on the order 1 < 3 < 2 systems.

IV. NUMERICAL EXAMPLES

Example 4.1. Consider the stability of the following interval
FO-LTI system

d*x(t)
dte

= Ax(t)

where o = 0.5, and A € [A™, AM] with

[ —1.95 0.35 0.7
A™=| -13 -39 07 |,

| —0.65 —1.95 —3.25 |

[ —1.05 0.65 1.3
AM = | —07 —-21 13

| —0.35 —1.05 —1.75 |

Using the Matlab LMI toolbox, it is found that the linear
matrix inequalities (13) in Theorem 3.2 are easily feasible.

V. CONCLUSIONS

In summary, this paper presents some brief sufficient con-
ditions for the stability of a class of FO-LTI system with
uncertain parameters, which may be easily feasible by the
Matlab LMI toolbox. In addition, we also relate the stability of
a fractional-order system with order 0 < o < 1 to the stability
of its equivalent fractional-order system with order 1 < § < 2,
and the relationship between « and f3 is also presented.
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