Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 32302
Operational Representation of Certain Hypergeometric Functions by Means of Fractional Derivatives and Integrals

Authors: Manoj Singh, Mumtaz Ahmad Khan, Abdul Hakim Khan


The investigation in the present paper is to obtain certain types of relations for the well known hypergeometric functions by employing the technique of fractional derivative and integral.

Keywords: Fractional Derivatives and Integrals, Hypergeometric functions.

Digital Object Identifier (DOI):

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1325


[1] G. Lauricella, Sulle funzioni ipergeometriche a piu variabili, Rend. Circ. Mat. Palermo, 111-158, 1893.
[2] H. Exton, Multiple Hypergeometric Functions and Applications, Halsted Press (Ellis Harwood Ltd.) Chichester, 1976.
[3] H. M. Srivastava and P.W. Karlsson, Multiple Gaussian hypergeometric series, Halsted press (Ellis Horwood Limited, Chichester), John Wiley and Sons, New York, Chichester, 1985.
[4] H.M. Srivastava, Generalized Neumann expansion involving hypergeometric functions, Proc. Camb. Phil. Soc., 63, 425-429, 1967.
[5] M.A. Khan and G.S. Abukhammash, On a generalization of Appell’s functions of two variables, Pro. Mathematica, Vol. XVI, Nos. 31-32, 61-83, 2002.
[6] P. Appell and J. Kamp´e de F´eriet, Fonctions hyp´ergeom´etriques et hyperspheriques, Polynˆomes d’ Hermite Gauthier-Villars, Paris, 1926.
[7] R.C. Pandey, On certain hypergeometric transformations, J. Math. Mech. 12, 113-118, 1963.
[8] S. Saran, Hypergeometric functions of three variables, Ganita, India, Vol.1, No.5, 83-90, 1954.
[9] S.F. Lacroix, Trait´e du calculus differentiel calcul integral: Mme, veconrcier, Tome Troisieme, seconde edition, 404-410, 1819.