**Commenced**in January 2007

**Frequency:**Monthly

**Edition:**International

**Paper Count:**30135

##### Lyapunov Type Inequalities for Fractional Impulsive Hamiltonian Systems

**Authors:**
Kazem Ghanbari,
Yousef Gholami

**Abstract:**

**Keywords:**
Fractional derivatives and integrals,
Hamiltonian
system,
Lyapunov type inequalities,
stability,
disconjugacy.

**Digital Object Identifier (DOI):**
doi.org/10.5281/zenodo.1124641

**References:**

[1] T. Abdeljawad; On conformable fractional calculus, J. Comput. Appl. Math., 279, (2015), 57-66.

[2] Mustafa Fahri Aktas¸; On the multivariate Lyapunov inequalities, Appl. Math. Comput. 232 (2014) 784-786.

[3] Mustafa Fahri Aktas¸, Devrim C¸ akmak, Aydin Tiryaki; On Lyapunov type inequalities of a three-point boundary value problem for third order linear differential equations, Appl. Math. Lett., (2015), In Press.

[4] Drumi Bainov, Valery Covachev; Impulsive Differential Equations With a Small Parameter, World Scientific, (1994).

[5] Sougata Dhar, Qingkai Kong; Liapunov-type inequalities for third-order half-linear equations and applications to boundary value problems, Nonlinear Anal. Theory, Methods and Applications, 110 (2014), 170-181.

[6] Rui A.C. Ferreira; A Lyapunov-type inequality for a fractional boundary value problem, Fract. Calc. Appl. Anal., Vol. 16, No 4 (2013), pp. 978-984; DOI: 10.2478/s13540-013-0060-5.

[7] Rui A. C. Ferreira; On a Lyapunov-type inequality and the zeros of a certain Mittag-Leffler function, J. Math. Anal. Appl., 412, 2 (2014), 1058-1063.

[8] G. Sh. Guseinov, B. Kaymakc¸alan; Lyapunov inequalities for discrete linear Hamiltonian systems, Comput. Math. Appl., 45, (2003), 1399-1416.

[9] G. Sh. Guseinov, A. Zafer; Stability criterion for second order linear impulsive differential equations with periodic coefficients, Math. Nachr., 281, No. 9, (2008), 1273-1282.

[10] G. Sh. Guseinov, A. Zafer; Stability criteria for linear periodic impulsive Hamiltonian systems, J. Math. Anal. Appl., 335, (2007), pp. 1195-1206.

[11] Mohamad Jleli, Bessem Samet; Lyapunov type inequalities for a fractional differential equation with mixed boundary conditions, Math. Inequal. Appl., Vol. 18, No. 2 (2015), 443-451.

[12] R. Khalil, M. Al Horani, A. Yousef, M. Sababheh; A new definition of fractional derivative, J. Comput. Appl. Math., 264, (2014), 65-70.

[13] Xin-Ge Liu, Mei-Lan Tang; Lyapunov-type inequality for higher order difference equations, Appl. Math. Comput. 232 (2014) 666-669.

[14] A. M. Lyapunov; The general problem of the stability of motion, Int. J. Control, Vol. 55, No. 3, 1992, pp. 521-790. http://www.tandfonline.com/ toc/tcon20/55/3.

[15] B .G. Pachpatte; Lyapunov tye integral inequalities for certain differential equations, Georgian Math. J., 4, No. 2, (1997), 139-148.

[16] B. G. Pachpatte; Inequalities related to zeros of solutions of certain second order differential equations, Ser. Math. Inform., 16 (2001), 35-44.

[17] B. G. Pachpatte; On Lyapunov type inequalities for certain higher order differential equations, J. Math. Anal. Appl., 195 (1995), 527-536.

[18] Gani T. Stamov; Almost Periodic Solutions of Impulsive Differential Equations, Springer, (2012).

[19] X. Yang; On Lyapunov type inequalities for certain higher order differential equations, Appl. Math. Comput., 134 (2003), 307-317.

[20] Xiaojing Yang, Yong-In Kim, Kueiming Lo; Lyapunov-type inequality for a class of even-order linear differential equations, Appl. Math. Comput., 245 (2014), 145-151.

[21] Xiaojing Yang, Yong-In Kim, Kueiming Lo; Lyapunov-type inequalities for a class of higher-order linear differential equations, Appl. Math. Lett., 34 (2014) 86-89.