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Abstract—In this paper, Backstepping method is proposed to
synchronize two fractional-order systems. The simulation results
show that this method can effectively synchronize two chaotic
systems.
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I. INTRODUCTION

RACTIONAL calculus is very interesting area, which has

been originated from 17th century. For demonstrate the
chaotic behavior some fractional-order differential systems
such as Chua circuit [1], Duffing system [2], jerk model [3],
Chen system [4], the Fractional-order Lii system [5], Rossler
system [6], Arneodo system [7] and Newton—Leipnik system
[8] have been found. Chaotic systems are difficult to be
synchronized. Control of chaotic systems has been considered
as an important and challenging problem because of
sensitivity of initial conditions. Different control technique as
in [9] (FSMC) strategy for synchronization of chaotic systems
has been proposed. In [10] an active sliding mode controller
has also been presented to synchronize two chaotic systems
with parametric uncertainty. An algorithm is designed to
determine parameters of active sliding mode controller in
synchronizing different chaotic systems have been studied in
[11]. A systems with uncertainties of an adaptive sliding mode
controller has also been studied in [12].Over the past decade,
Backstepping has become the most popular design method for
adaptive nonlinear control because it can guarantee global
stabilities, tracking, and transient performance for a broad
class of strict feedback systems. It has been shown that many
chaotic systems as chaos, including Duffing oscillator, van der
pol oscillator, Rossler system, Lorenz system, Lii system,
Chen system and Chua’s circuit, can be transformed into non-
autonomous form has been studied in [13]-[15] and the
backstepping control schemes have been employed to control
these chaotic systems with key parameters unknown. In
particular, the output of the controlled chaotic system has been
designed to asymptotically track any smooth and bounded
reference signals generated from a known reference model
which may be a chaotic system. In this paper Backstepping
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method is applied to synchronize two fractional-order chaotic
systems.

II. BACKSTEPPING METHOD FOR FRACTIONAL SYSTEM

Consider two dynamical systems. The master system and
slave system as:

X = a(x; — %)

Xy =(Y —a)x; —x1x3 +Vx,

X3 = —Px3z —0x, +x,X,

Xy = —dxy + fx3 + x1%, )
Yi= a(y2-Y1)

V2= by; —cy2-y1y3

V3= y1° —dy;

Ya=—Y1Y3 —8Y4 ()

The fractional order derivatives of the systems (1) and (2)
are

D*“X1 = a(x; — xq)

D.*x, =Y —a)x; —x;%3 + Yx,

D,*x3 = —Px3 —0x4 +x1X;,

D,*xs = —dx, + fx3 + x,.%, 3)
D.%y; = a(y,-y:)+u,

D.%y, = by; — cy,_y1ys +u,

D,%y3 = y;12 — dys + u3

D.%ys = —y1¥3 —8ys + Uy “)

The error dynamics are
[o¢
D."e; = a(e;_ey)+u,

D,*e, =be; + x;(b—y +a) —ce, —x,(c+y) —es(e; +x1) — ey x5+ uy

D.%es = e, +x,2 + 2e,%, — des + x3(B — d) + 8xq — X1%5 + Us
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D.%ey= —y1y3 — 8Ys + Uy + dxy — fx3 — X1%; (5)
In this section, the backstepping design technique is applied
to obtain control laws of error system (5). The design
procedure is divided into the following steps.
In the first step we consider the stability of the first equation
of system (5)
D.*w; = a(e,_e;)+u,

D.*w; = a(e,—wy)+1, (6)

where w; = e; and e, and u, are controllers choose the first
Lyapunov functional candidate as follow

vy =% w2 >0 @)
The derivative of the above function is
Vi= Wy Wy

Vi= Wy D*l_a(D*“Wl)

Vi= Wy D*l_a(a(ez—w1)+u1)
Assuming controllers,

e;= oy (wy)

w=aw;_k;D," "% w,
vi(e)=—kyw;* +w; D, "%(a ;)
where k, is a positive constant and for
o, (wy) = 0, the equation is

vi(e)= —kywy?

Subsequently the zero solution of (7) is asymptotically
stable.

wy=e; — <; (wy)

When e, is considered as an controller, <, (e;) is
estimative function. Defining

w,=e; — o (wy)

D.*w; = a(wy,_wy)+u,

D.*w, =bw; +x,(b—y +a) —cw, —x,(c +y) —es(e; +x,) —wyx; +u,
Substituting u;=aw; _k,D,* "% w,

D.*w;=aw,_k;D,* *w,

D.w, =bw; +x;(b—y +a) —cw, —x,(c +y) — es(e; +x1) —wyxs +u,

®)
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where e; and u, are controllers now, we candidate the second
Lyapunov function as

Vo (Wi, W)= vi(wy) + 2w, >0 ©)
V2(W1, Wz) = _k1W12 + WzD*l_a (D*MWZ)

V2(W1, Wz) = —k1W12 + WzD*l_a(bwl + xl(b - y + a) -
cwy —xz(c +¥) —ez(eg +x1) —wixz) +u,

Assuming controllers
up = —[(bwy + x1(b—y +a) —cwy —xz(c +7y) —esle; +x1) —
wiX3)]— kzD*a_l w3
(10)

and e;= <, (W, w,)

Vé Wy, wp) = —kywy? — kyw,? + WzD*l_a(_mz(“ﬁ‘ wy))

where k, is a positive constant, and for «, (wy,w,)=0, the
equation is

V.Z(Wl, Wz) = —k1W12 - k2W22 <0
This will guaranty that the zero solution of (9) is
asymptotically stable.
When e; is considered as a controllers in (8), <, (W, wy)
is estimative function. Defining
W3=e3 — <, (Wy, W)
we study (wy, w,, w3)
D.*w; = a(wy_wy)+u,
D,“w, =bw; +x,(b—y +a) —cw, —x,(c +y) —es(e; +x;) —wyx; +uy
D, Wy w;? 4+ x,2 + 2wy —dws + x3 (B —d) + 6x, — x10, +uz  (11)

Substituting u;=aw,; _k;D,* % w, ,

Uy = —[(bw; +x;(b—y +a) —cw, —x,(c +y) —ez(e; +x1) —
wix3)]— kzD*a_l Wp

D*«le an—kl D*l_a Wy
-1
D*«sz _kzD*a Wy, — W3 (W1 + xl)
D,*Ws- wi? 4+ x,% 4 2wy —dws + x5 (B —d) + 6x4 — x1x, +us  (12)
where u3 is a controller. Now the Lyapunov function is

1
V3 (Wi, Wa, W3)=vi(Wq) + vo(wy, wy) + > w32 >0

V3 (Wy, Wy, w3)= —kywy 2 — kaw,? + wsD, (D, %w3)
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Vs (Wy, Wy, w3)=—k,w; 2 — k,w,? + wiD, 2% wy2 4+ x,2+  order systems by considering the values g; = g, = q3 = q4 =
2wyxy — dws + x3(8 — d) + x4 —X1X, + Uy 0.95,a = 10,b = 28,c = 2,d = 1.The initial conditions for
the master system are (1,1,1,1) and for slave system are (3, 4,

Assuming controller 6, 5). The values of (kq k;, k3, k,), is chosen as (10, 10, 10,

u3=—[w12 +x,.2 + 2wy x; — dwy + x3(B—d) +6x, — xlxz] — k,D, %! w3(13) 10)-
. 30
Therefore, the equation
‘7.3(W1,W2, W3):_k1W12 - k2W22 - k3W32 <0
where k3 a positive constant. The controller is uq, u,, uz will s
stabilize the (5). g
W,= €4 — X3 (Wq, W2, W3)
D, *w; = c(Wp_wy)+1uy
o
D.*w, =bw; +x,(b—y +a) —cw, —x,(c +y) —es(ey +x1) —wyxz +u, et 23 “mim A
D 5wy = i + 1,2 + 2wy, — dws + 23 (F — d) + 84 — X025 + 13 Fig. 1 Synchronization between master and slave system
D, Wy= —y1y3 — 6ys + Uy + dx, — fx3 — x1X; (14) *
Substituting u,, u,, U3
D.“w;=aw,;_k;D," *w, _
D*O(WZZ _kzD*a_l W2 - W3 (Wl + xl) x
D*O(Wg = _ng*(l—l W3
O
D."Wy= —y1¥3 — 6ys + uy + dxy — fxz —x1%; (15) ol
0 1 2 3 4 5 6 7 8 9 10
time(t)
where u, is a controller the Lyapunov function is
Fig. 2 Synchronization between x; ;) and y, (1
1_
V4 (Wi, Wy, ws, wy)=—kiw1? — kawy? — ksws?+w,D, "% (w,) -
1- I
Vo (Wi, o, w3, wy)=—kiwi? — kowy? — kaws® + WD " (y1y; — ®
Oys +dxy — fx3 — x1%3)+ Uy 20p1]
15H
Assuming 10
g
-1 3 s
Uy = —[=y1¥3 — ¥4 + g + dxy — fxs — 2x1%,] — kgD (wy) (16) 2 0
The time derivative is o
10l
Va((Wy, Wa, wa, W) =—k;w;? — kawy? — kgws? — kyw,? <0 sy
20 L L L L
where k, is a positive constant. Rt e

Fig. 3 Simulation result between X3 and y.
III. NUMERICAL SIMULATION 3O 3O

Numerical simulations have been carried out using the
MATLAB to solve the sets of fractional- order differential
equations related to the master and slave systems. It has been
shown that all of the state variables of the slave system
converge to that of the master system. The simulation results
verify the performance of the Backstepping controller. We
applied Backstepping control to synchronize two fractional-
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Fig. 4 Simulation result between master and slave system
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Fig .5 Synchronization of control signal uy s
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Fig .6 Synchronization of control signal ;)

IV. CONCLUSION

In this paper synchronization between fractional order
master and slave systems has been investigated by using
backstepping control method. Through simulation it has been
established that our analytical results and computational
results are in excellent agreement.
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Fig. 7 Synchronization of control signal uz ;)
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Fig. 8 Synchronization of control signal u, ;)
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