Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 30579
Numerical Solution of Volterra Integro-differential Equations of Fractional Order by Laplace Decomposition Method

Authors: Changqing Yang, Jianhua Hou

Abstract:

In this paper the Laplace Decomposition method is developed to solve linear and nonlinear fractional integro- differential equations of Volterra type.The fractional derivative is described in the Caputo sense.The Laplace decomposition method is found to be fast and accurate.Illustrative examples  are included to demonstrate the validity and applicability of presented technique and comparasion is made with exacting results.

Keywords: fractional derivative, Laplace transform, integro-differential equations, adomian polynomials, pade appoximants

Digital Object Identifier (DOI): doi.org/10.5281/zenodo.1087866

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1168

References:


[1] M. Caputo, Linear models of dissipation whose Q is almost frequency in dependent-II, Geophys. J. Roy. Astron. Soc. 13(5)(1967) 529-539.
[2] W. E. Olmstead, R. A. Handelsman, Diffusion in a semi-infinite region with nonlinear surface dissipation, SIAM Rev. 18(2)(1976) 275-291.
[3] Y. Nawaz Variational iteration method and homotopy perturbation method for fourth-order fractional integro-differential equations, Comput. Math. Appl. 61(8)(2011) 2330-2341.
[4] S. R. Seyed Alizadeh , G. G. Domairry and S. Karimpour, An approximation of the analytical solution of the linear and nonlinear integrodifferential equations by homotopy perturbation method, Acta. Appl. Math. 104(3) (2008) 355-366.
[5] S. Momani, M. A. Noor, Numerical methods for four-order fractional integro-differential equations, Appl. Math. Comput. 182(1) (2006) 754-760.
[6] S. Momani , R. Qaralleh, An efficient method for solving systems of fractional integro-differential equations, Comput. Math. Appl. 52(3-4)(2006) 459-470.
[7] X. Zhang, B. Tang, Y. He, Homotopy analysis method for higher-order fractional integro-differential equations Comput. math. appl. 62(8) (2011) 3194C3203.
[8] E. A. Rawashdeh, Numerical solution of fractional integro-differential equations by collocation method, Appl. math. comput. 176(1) (2006) 1-6.
[9] A. Saadatmandi, M. Dehghan, A Legendre collocation method for fractional integro-differential equations J. Vib. Control. 17(3) (2011) 2050-2058.
[10] H. Saeedi, M. Mohseni Moghadam, Numerical solution of nonlinear Volterra integro-differential equations of arbitrary order by CAS wavelets Commun. Nonlinear. Sci. Numer. Simulat. 16(3) (2011) 1216-1226.
[11] L. Zhu, Q. Fan, Solving fractional nonlinear Fredholm integrodifferential equations by the second kind Chebyshev wavelet, Commun. Nonlinear. Sci. Numer. Simulat. 17(6)(2012) 2333-2341.
[12] P. Mokhtary, F. Ghoreishi, The L2-convergence of the Legendre spectral Tau matrix formulation for nonlinear fractional integro differential equations, Numer. Algor. 58(4)(2011) 475-496.
[13] S. A. Khuri, A Laplace decomposition algorithm applied to a class of nonlinear differential equations, J. Math. Appl. 1(4) (2001) 141-155.
[14] I. Podlubny, Fractional Differential Equations New York, USA: Academic Press, 1999.
[15] A. M. Wazwaz A new algorithm for calculatingadomianpolynomials for nonlinear operators, Appl. Math. Comput. 111(1)(2002) 33-51.
[16] Y. Khan, A effective modification of the Laplace decomposition method for nonlinear equations, Int. J. Nonlin. Sci. Num. Simul. 10(11-12) (2009) 1373-1376.