Application of Fractional Model Predictive Control to Thermal System
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 32845
Application of Fractional Model Predictive Control to Thermal System

Authors: Aymen Rhouma, Khaled Hcheichi, Sami Hafsi


The article presents an application of Fractional Model Predictive Control (FMPC) to a fractional order thermal system using Controlled Auto Regressive Integrated Moving Average (CARIMA) model obtained by discretization of a continuous fractional differential equation. Moreover, the output deviation approach is exploited to design the K -step ahead output predictor, and the corresponding control law is obtained by solving a quadratic cost function. Experiment results onto a thermal system are presented to emphasize the performances and the effectiveness of the proposed predictive controller.

Keywords: Fractional model predictive control, fractional order systems, thermal system.

Digital Object Identifier (DOI):

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1175


[1] Bagley R., Calico R. Fractional order state equations for the control of viscoelastically damped structures. Journal of Guidance, Control, and Dynamics, 1991, 14:304–311.
[2] Zhang Y., Tian Q., Chen L., Yang J. Simulation of a viscoelastic flexible multibody system using absolute nodal coordinate and fractional derivative methods. Multibody System Dynamics, 2009, 21:281–303.
[3] Yuste S., Abad E., Lindenberg K. Application of fractional calculus to reaction-subdiffusion processes and morphogen gradient formation. Arxiv preprint arXiv 2010, 1006.2661.
[4] Mainardi F., Raberto M., Gorenflo R., Scalas E. Fractional calculus and continuous-time finance II: the waiting-time distribution. Physica A: Statistical Mechanics and its Applications, 2000, 287:468–481.
[5] Sun H.H., Charef A., Tsao Y., Onaral B. Analysis of polarization dynamics by singularity decomposition method. Annals of Biomedical Engineering, 1992,20:321-335
[6] Shantanu D. Functional fractional calculs for system identification and controls. Springer-verlag, Berlin, 2008.
[7] Victor S., Malti R., Melchior P., Oustaloup A. Instrumental Variable Identification of Hybrid Fractional Box-Jenking Models, 18th IFAC World Congress, Milano (Italy),2011.
[8] Fukushima H., Kim T., Sugie T. Adaptive model predictive control for a class of constrained linear systems based on comparison model. Automatica, 2007, 43(2):301–308.
[9] Camacho E.F., Bordons C. Model Predictive Control. Springer-Verlag, Berlin, 2004.
[10] Tavazoei, M.S. A note on fractional-order derivatives of periodic functions. Automatica 2010, 46:945–948.
[11] Trigeassou J.C., Poinot P., Lin J., Oustaloup A., Levron F. Modelling and identification of a non integer order system, In ECC, Karlsruhe, Germany, 1999.
[12] Oustaloup A. la dérivation non-entiere. Hermès-Paris, 1995.
[13] Oustaloup A., Levron F., Mathieu B., Nanot F.M. Frequency band complex non integer differentiator: characterization and synthesis. IEEE Transactions on Circuits and Systems I: Fundamental Theory and Applications, 2000, 47:25–40.
[14] Miller K.S., Ross B. An introduction to the fractional calculs and fractional differential equation. John Wiley and Son, 1993.
[15] Oustaloup A., Olivier C., Ludovic L. Representation et Identification Par Modele Non Entier. Paris: Lavoisier; 2005.
[16] Cois O. Systèmes linéaires non entiers et identification par modèle non entier: application en thermique. PhD thesis, Université Bordeaux1, Talence, 2002.
[17] Malti R., Victor S., Oustaloup A., Garnier H. An optimal instrumental variable method for continuous-time fractional model identification. In 17th IFAC World Congress, 14379–14384. Seoul South Korea, July 2008.