Search results for: Fractional order observer
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 5291

Search results for: Fractional order observer

5291 Observer Based Control of a Class of Nonlinear Fractional Order Systems using LMI

Authors: Elham Amini Boroujeni, Hamid Reza Momeni

Abstract:

Design of an observer based controller for a class of fractional order systems has been done. Fractional order mathematics is used to express the system and the proposed observer. Fractional order Lyapunov theorem is used to derive the closed-loop asymptotic stability. The gains of the observer and observer based controller are derived systematically using the linear matrix inequality approach. Finally, the simulation results demonstrate validity and effectiveness of the proposed observer based controller.

Keywords: Fractional order calculus, Fractional order observer, Linear matrix inequality, Nonlinear Systems, Observer based Controller.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2834
5290 Adaptive Sliding Mode Observer for a Class of Systems

Authors: D.Elleuch, T.Damak

Abstract:

In this paper, the performance of two adaptive observers applied to interconnected systems is studied. The nonlinearity of systems can be written in a fractional form. The first adaptive observer is an adaptive sliding mode observer for a Lipchitz nonlinear system and the second one is an adaptive sliding mode observer having a filtered error as a sliding surface. After comparing their performances throughout the inverted pendulum mounted on a car system, it was shown that the second one is more robust to estimate the state.

Keywords: Adaptive observer, Lipchitz system, Interconnected fractional nonlinear system, sliding mode.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1609
5289 Backstepping Sliding Mode Controller Coupled to Adaptive Sliding Mode Observer for Interconnected Fractional Nonlinear System

Authors: D. Elleuch, T. Damak

Abstract:

Performance control law is studied for an interconnected fractional nonlinear system. Applying a backstepping algorithm, a backstepping sliding mode controller (BSMC) is developed for fractional nonlinear system. To improve control law performance, BSMC is coupled to an adaptive sliding mode observer have a filtered error as a sliding surface. The both architecture performance is studied throughout the inverted pendulum mounted on a cart. Simulation result show that the BSMC coupled to an adaptive sliding mode observer have stable control law and eligible control amplitude than the BSMC.

Keywords: Backstepping sliding mode controller, interconnected fractional nonlinear system, adaptive sliding mode observer.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2246
5288 Stability of Interval Fractional-order Systems with Order 0 < α < 1

Authors: Hong Li, Shou-ming Zhong, Hou-biao Li

Abstract:

In this paper, some brief sufficient conditions for the stability of FO-LTI systems dαx(t) dtα = Ax(t) with the fractional order are investigated when the matrix A and the fractional order α are uncertain or both α and A are uncertain, respectively. In addition, we also relate the stability of a fractional-order system with order 0 < α ≤ 1 to the stability of its equivalent fractional-order system with order 1 ≤ β < 2, the relationship between α and β is presented. Finally, a numeric experiment is given to demonstrate the effectiveness of our results.

Keywords: Interval fractional-order systems, linear matrix inequality (LMI), asymptotical stability.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3547
5287 Fractional Order Feedback Control of a Ball and Beam System

Authors: Santosh Kr. Choudhary

Abstract:

In this paper, fractional order feedback control of a ball beam model is investigated. The ball beam model is a particular example of the double Integrator system having strongly nonlinear characteristics and unstable dynamics which make the control of such system a challenging task. Most of the work in fractional order control systems are in theoretical nature and controller design and its implementation in practice is very small. In this work, a successful attempt has been made to design a fractional order PIλDμcontroller for a benchmark laboratory ball and beam model. Better performance can be achieved using a fractional order PID controller and it is demonstrated through simulations results with a comparison to the classic PID controller.

Keywords: Fractional order calculus, fractional order controller, fractional order system, ball and beam system, PIλDμ controller, modelling, simulation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3488
5286 A Design of Fractional-Order PI Controller with Error Compensation

Authors: Mazidah Tajjudin, Norhashim Mohd Arshad, Ramli Adnan

Abstract:

Fractional-order controller was proven to perform better than the integer-order controller. However, the absence of a pole at origin produced marginal error in fractional-order control system. This study demonstrated the enhancement of the fractionalorder PI over the integer-order PI in a steam temperature control. The fractional-order controller was cascaded with an error compensator comprised of a very small zero and a pole at origin to produce a zero steady-state error for the closed-loop system. Some modification on the error compensator was suggested for different order fractional integrator that can improve the overall phase margin.

Keywords: Fractional-order PI, Ziegler-Nichols tuning, Oustaloup's Recursive Approximation, steam temperature control.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2244
5285 Realization of Fractional-Order Capacitors with Field-Effect Transistors

Authors: Steve Hung-Lung Tu, Yu-Hsuan Cheng

Abstract:

A novel and efficient approach to realize fractional-order capacitors is investigated in this paper. Meanwhile, a new approach which is more efficient for semiconductor implementation of fractional-order capacitors is proposed. The feasibility of the approach has been verified with the preliminary measured results.

Keywords: Fractional-order, field-effect transistors, RC transmission lines.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3111
5284 Design of a Non-linear Observer for VSI Fed Synchronous Motor

Authors: P. Ramana , K. Alice Mary, M. Surya Kalavathi, M. Phani Kumar

Abstract:

This paper discusses two observers, which are used for the estimation of parameters of PMSM. Former one, reduced order observer, which is used to estimate the inaccessible parameters of PMSM. Later one, full order observer, which is used to estimate all the parameters of PMSM even though some of the parameters are directly available for measurement, so as to meet with the insensitivity to the parameter variation. However, the state space model contains some nonlinear terms i.e. the product of different state variables. The asymptotic state observer, which approximately reconstructs the state vector for linear systems without uncertainties, was presented by Luenberger. In this work, a modified form of such an observer is used by including a non-linear term involving the speed. So, both the observers are designed in the framework of nonlinear control; their stability and rate of convergence is discussed.

Keywords: Permanent magnet synchronous motor, Mathematicalmodelling, Rotor reference frame, parameter estimation, Luenbergerobserver, reduced order observer, full order observer

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1816
5283 Stability Analysis of Fractional Order Systems with Time Delay

Authors: Hong Li, Shou-Ming Zhong, Hou-Biao Li

Abstract:

In this paper, we mainly study the stability of linear and interval linear fractional systems with time delay. By applying the characteristic equations, a necessary and sufficient stability condition is obtained firstly, and then some sufficient conditions are deserved. In addition, according to the equivalent relationship of fractional order systems with order 0 < α ≤ 1 and with order 1 ≤ β < 2, one may get more relevant theorems. Finally, two examples are provided to demonstrate the effectiveness of our results.

Keywords: Fractional order systems, Time delay, Characteristic equation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3561
5282 On Fractional (k,m)-Deleted Graphs with Constrains Conditions

Authors: Sizhong Zhou, Hongxia Liu

Abstract:

Let G be a graph of order n, and let k  2 and m  0 be two integers. Let h : E(G)  [0, 1] be a function. If e∋x h(e) = k holds for each x  V (G), then we call G[Fh] a fractional k-factor of G with indicator function h where Fh = {e  E(G) : h(e) > 0}. A graph G is called a fractional (k,m)-deleted graph if there exists a fractional k-factor G[Fh] of G with indicator function h such that h(e) = 0 for any e  E(H), where H is any subgraph of G with m edges. In this paper, it is proved that G is a fractional (k,m)-deleted graph if (G)  k + m + m k+1 , n  4k2 + 2k − 6 + (4k 2 +6k−2)m−2 k−1 and max{dG(x), dG(y)}  n 2 for any vertices x and y of G with dG(x, y) = 2. Furthermore, it is shown that the result in this paper is best possible in some sense.

Keywords: Graph, degree condition, fractional k-factor, fractional (k, m)-deleted graph.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1149
5281 A Neighborhood Condition for Fractional k-deleted Graphs

Authors: Sizhong Zhou, Hongxia Liu

Abstract:

Abstract–Let k ≥ 3 be an integer, and let G be a graph of order n with n ≥ 9k +3- 42(k - 1)2 + 2. Then a spanning subgraph F of G is called a k-factor if dF (x) = k for each x ∈ V (G). A fractional k-factor is a way of assigning weights to the edges of a graph G (with all weights between 0 and 1) such that for each vertex the sum of the weights of the edges incident with that vertex is k. A graph G is a fractional k-deleted graph if there exists a fractional k-factor after deleting any edge of G. In this paper, it is proved that G is a fractional k-deleted graph if G satisfies δ(G) ≥ k + 1 and |NG(x) ∪ NG(y)| ≥ 1 2 (n + k - 2) for each pair of nonadjacent vertices x, y of G.

Keywords: Graph, minimum degree, neighborhood union, fractional k-factor, fractional k-deleted graph.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1017
5280 Perturbation in the Fractional Fourier Span due to Erroneous Transform Order and Window Function

Authors: Sukrit Shankar, Chetana Shanta Patsa, Jaydev Sharma

Abstract:

Fractional Fourier Transform is a generalization of the classical Fourier Transform. The Fractional Fourier span in general depends on the amplitude and phase functions of the signal and varies with the transform order. However, with the development of the Fractional Fourier filter banks, it is advantageous in some cases to have different transform orders for different filter banks to achieve better decorrelation of the windowed and overlapped time signal. We present an expression that is useful for finding the perturbation in the Fractional Fourier span due to the erroneous transform order and the possible variation in the window shape and length. The expression is based on the dependency of the time-Fractional Fourier span Uncertainty on the amplitude and phase function of the signal. We also show with the help of the developed expression that the perturbation of span has a varying degree of sensitivity for varying degree of transform order and the window coefficients.

Keywords: Fractional Fourier Transform, Perturbation, Fractional Fourier span, amplitude, phase, transform order, filterbanks.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1427
5279 Derivation of Fractional Black-Scholes Equations Driven by Fractional G-Brownian Motion and Their Application in European Option Pricing

Authors: Changhong Guo, Shaomei Fang, Yong He

Abstract:

In this paper, fractional Black-Scholes models for the European option pricing were established based on the fractional G-Brownian motion (fGBm), which generalizes the concepts of the classical Brownian motion, fractional Brownian motion and the G-Brownian motion, and that can be used to be a tool for considering the long range dependence and uncertain volatility for the financial markets simultaneously. A generalized fractional Black-Scholes equation (FBSE) was derived by using the Taylor’s series of fractional order and the theory of absence of arbitrage. Finally, some explicit option pricing formulas for the European call option and put option under the FBSE were also solved, which extended the classical option pricing formulas given by F. Black and M. Scholes.

Keywords: European option pricing, fractional Black-Scholes equations, fractional G-Brownian motion, Taylor’s series of fractional order, uncertain volatility.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 756
5278 Application of Fractional Model Predictive Control to Thermal System

Authors: Aymen Rhouma, Khaled Hcheichi, Sami Hafsi

Abstract:

The article presents an application of Fractional Model Predictive Control (FMPC) to a fractional order thermal system using Controlled Auto Regressive Integrated Moving Average (CARIMA) model obtained by discretization of a continuous fractional differential equation. Moreover, the output deviation approach is exploited to design the K -step ahead output predictor, and the corresponding control law is obtained by solving a quadratic cost function. Experiment results onto a thermal system are presented to emphasize the performances and the effectiveness of the proposed predictive controller.

Keywords: Fractional model predictive control, fractional order systems, thermal system.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1167
5277 Finite-time Stability Analysis of Fractional-order with Multi-state Time Delay

Authors: Liqiong Liu, Shouming Zhong

Abstract:

In this paper, the finite-time stabilization of a class of multi-state time delay of fractional-order system is proposed. First, we define finite-time stability with the fractional-order system. Second, by using Generalized Gronwall's approach and the methods of the inequality, we get some conditions of finite-time stability for the fractional system with multi-state delay. Finally, a numerical example is given to illustrate the result.

Keywords: Finite-time stabilization, fractional-order system, Gronwall inequality.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1850
5276 Lyapunov Type Inequalities for Fractional Impulsive Hamiltonian Systems

Authors: Kazem Ghanbari, Yousef Gholami

Abstract:

This paper deals with study about fractional order impulsive Hamiltonian systems and fractional impulsive Sturm-Liouville type problems derived from these systems. The main purpose of this paper devotes to obtain so called Lyapunov type inequalities for mentioned problems. Also, in view point on applicability of obtained inequalities, some qualitative properties such as stability, disconjugacy, nonexistence and oscillatory behaviour of fractional Hamiltonian systems and fractional Sturm-Liouville type problems under impulsive conditions will be derived. At the end, we want to point out that for studying fractional order Hamiltonian systems, we will apply recently introduced fractional Conformable operators.

Keywords: Fractional derivatives and integrals, Hamiltonian system, Lyapunov type inequalities, stability, disconjugacy.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1479
5275 Measurement Fractional Order Sallen-Key Filters

Authors: Ahmed Soltan, Ahmed G. Radwan, Ahmed M. Soliman

Abstract:

This work aims to generalize the integer order Sallen-Key filters into the fractional-order domain. The analysis in the case of two different fractional-order elements introduced where the general transfer function becomes four terms which is unusual in the conventional case. In addition, the effect of the transfer function parameters on the filter poles and hence the stability is introduced and closed forms for the filter critical frequencies are driven. Finally, different examples for the fractional order Sallen-Key filter design are presented with circuit simulations using ADS where a great matching between the numerical and simulation results is obtained.

Keywords: Analog Filter, Low-Pass Filter, Fractance, Sallen-Key, Stability.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3082
5274 Synthesis of Digital Circuits with Genetic Algorithms: A Fractional-Order Approach

Authors: Cecília Reis, J. A. Tenreiro Machado, J. Boaventura Cunha

Abstract:

This paper analyses the performance of a genetic algorithm using a new concept, namely a fractional-order dynamic fitness function, for the synthesis of combinational logic circuits. The experiments reveal superior results in terms of speed and convergence to achieve a solution.

Keywords: Circuit design, fractional-order systems, genetic algorithms, logic circuits.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1374
5273 Notes on Fractional k-Covered Graphs

Authors: Sizhong Zhou, Yang Xu

Abstract:

A graph G is fractional k-covered if for each edge e of G, there exists a fractional k-factor h, such that h(e) = 1. If k = 2, then a fractional k-covered graph is called a fractional 2-covered graph. The binding number bind(G) is defined as follows, bind(G) = min{|NG(X)| |X| : ├ÿ = X Ôèå V (G),NG(X) = V (G)}. In this paper, it is proved that G is fractional 2-covered if δ(G) ≥ 4 and bind(G) > 5 3 .

Keywords: graph, binding number, fractional k-factor, fractional k-covered graph.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1128
5272 Quality Factor Variation with Transform Order in Fractional Fourier Domain

Authors: Sukrit Shankar, Chetana Shanta Patsa, K. Pardha Saradhi, Jaydev Sharma

Abstract:

Fractional Fourier Transform is a powerful tool, which is a generalization of the classical Fourier Transform. This paper provides a mathematical relation relating the span in Fractional Fourier domain with the amplitude and phase functions of the signal, which is further used to study the variation of quality factor with different values of the transform order. It is seen that with the increase in the number of transients in the signal, the deviation of average Fractional Fourier span from the frequency bandwidth increases. Also, with the increase in the transient nature of the signal, the optimum value of transform order can be estimated based on the quality factor variation, and this value is found to be very close to that for which one can obtain the most compact representation. With the entire mathematical analysis and experimentation, we consolidate the fact that Fractional Fourier Transform gives more optimal representations for a number of transform orders than Fourier transform.

Keywords: Fractional Fourier Transform, Quality Factor, Fractional Fourier span, transient signals.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1194
5271 Backstepping Design and Fractional Derivative Equation of Chaotic System

Authors: Ayub Khan, Net Ram Garg, Geeta Jain

Abstract:

In this paper, Backstepping method is proposed to synchronize two fractional-order systems. The simulation results show that this method can effectively synchronize two chaotic systems.

Keywords: Backstepping method, Fractional order, Synchronization.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2091
5270 Synthesis of Logic Circuits Using Fractional-Order Dynamic Fitness Functions

Authors: Cecília Reis, J. A. Tenreiro Machado, J. Boaventura Cunha

Abstract:

This paper analyses the performance of a genetic algorithm using a new concept, namely a fractional-order dynamic fitness function, for the synthesis of combinational logic circuits. The experiments reveal superior results in terms of speed and convergence to achieve a solution.

Keywords: Circuit design, fractional-order systems, genetic algorithms, logic circuits

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1683
5269 Relation between Roots and Tangent Lines of Function in Fractional Dimensions: A Method for Optimization Problems

Authors: Ali Dorostkar

Abstract:

In this paper, a basic schematic of fractional dimensional optimization problem is presented. As will be shown, a method is performed based on a relation between roots and tangent lines of function in fractional dimensions for an arbitrary initial point. It is shown that for each polynomial function with order N at least N tangent lines must be existed in fractional dimensions of 0 < α < N+1 which pass exactly through the all roots of the proposed function. Geometrical analysis of tangent lines in fractional dimensions is also presented to clarify more intuitively the proposed method. Results show that with an appropriate selection of fractional dimensions, we can directly find the roots. Method is presented for giving a different direction of optimization problems by the use of fractional dimensions.

Keywords: Tangent line, fractional dimension, root, optimization problem.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 509
5268 An Efficient Collocation Method for Solving the Variable-Order Time-Fractional Partial Differential Equations Arising from the Physical Phenomenon

Authors: Haniye Dehestani, Yadollah Ordokhani

Abstract:

In this work, we present an efficient approach for solving variable-order time-fractional partial differential equations, which are based on Legendre and Laguerre polynomials. First, we introduced the pseudo-operational matrices of integer and variable fractional order of integration by use of some properties of Riemann-Liouville fractional integral. Then, applied together with collocation method and Legendre-Laguerre functions for solving variable-order time-fractional partial differential equations. Also, an estimation of the error is presented. At last, we investigate numerical examples which arise in physics to demonstrate the accuracy of the present method. In comparison results obtained by the present method with the exact solution and the other methods reveals that the method is very effective.

Keywords: Collocation method, fractional partial differential equations, Legendre-Laguerre functions, pseudo-operational matrix of integration.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 961
5267 Design of Nonlinear Observer by Using Chebyshev Interpolation based on Formal Linearization

Authors: Kazuo Komatsu, Hitoshi Takata

Abstract:

This paper discusses a design of nonlinear observer by a formal linearization method using an application of Chebyshev Interpolation in order to facilitate processes for synthesizing a nonlinear observer and to improve the precision of linearization. A dynamic nonlinear system is linearized with respect to a linearization function, and a measurement equation is transformed into an augmented linear one by the formal linearization method which is based on Chebyshev interpolation. To the linearized system, a linear estimation theory is applied and a nonlinear observer is derived. To show effectiveness of the observer design, numerical experiments are illustrated and they indicate that the design shows remarkable performances for nonlinear systems.

Keywords: nonlinear system, nonlinear observer, formal linearization, Chebyshev interpolation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1542
5266 A Necessary Condition for the Existence of Chaos in Fractional Order Delay Differential Equations

Authors: Sachin Bhalekar

Abstract:

In this paper we propose a necessary condition for the existence of chaos in delay differential equations of fractional order. To explain the proposed theory, we discuss fractional order Liu system and financial system involving delay.

Keywords: Caputo derivative, delay, stability, chaos.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2619
5265 State of Charge Estimator Based On High-Gain Observer for Lithium-Ion Batteries

Authors: Jaeho Han, Moonjung Kim, Won-Ho Kim, Chang-Ho Hyun

Abstract:

This paper introduces a high-gain observer based state of charge(SOC) estimator for lithium-Ion batteries. The proposed SOC estimator has a high-gain observer(HGO) structure. The HGO scheme enhances the transient response speed and diminishes the effect of uncertainties. Furthermore, it guarantees that the output feedback controller recovers the performance of the state feedback controller when the observer gain is sufficiently high. In order to show the effectiveness of the proposed method, the linear RC battery model in ADVISOR is used. The performance of the proposed method is compared with that of the conventional linear observer(CLO) and some simulation result is given.

Keywords: SOC, high-gain, observer, uncertainties, robust

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1498
5264 Fractional-Order PI Controller Tuning Rules for Cascade Control System

Authors: Truong Nguyen Luan Vu, Le Hieu Giang, Le Linh

Abstract:

The fractional–order proportional integral (FOPI) controller tuning rules based on the fractional calculus for the cascade control system are systematically proposed in this paper. Accordingly, the ideal controller is obtained by using internal model control (IMC) approach for both the inner and outer loops, which gives the desired closed-loop responses. On the basis of the fractional calculus, the analytical tuning rules of FOPI controller for the inner loop can be established in the frequency domain. Besides, the outer loop is tuned by using any integer PI/PID controller tuning rules in the literature. The simulation study is considered for the stable process model and the results demonstrate the simplicity, flexibility, and effectiveness of the proposed method for the cascade control system in compared with the other methods.

Keywords: Fractional calculus, fractional–order proportional integral controller, cascade control system, internal model control approach.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1509
5263 Stability Analysis in a Fractional Order Delayed Predator-Prey Model

Authors: Changjin Xu, Peiluan Li

Abstract:

In this paper, we study the stability of a fractional order delayed predator-prey model. By using the Laplace transform, we introduce a characteristic equation for the above system. It is shown that if all roots of the characteristic equation have negative parts, then the equilibrium of the above fractional order predator-prey system is Lyapunov globally asymptotical stable. An example is given to show the effectiveness of the approach presented in this paper.

Keywords: Fractional predator-prey model, laplace transform, characteristic equation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2456
5262 Speed -Sensorless Vector Control of Parallel Connected Induction Motor Drive Fed by a Single Inverter using Natural Observer

Authors: R. Gunabalan, V. Subbiah

Abstract:

This paper describes the speed sensorless vector control method of the parallel connected induction motor drive fed by a single inverter. Speed and rotor fluxes of the induction motor are estimated by natural observer with load torque adaptation and adaptive rotor flux observer. The performance parameters speed and rotor fluxes are estimated from the measured terminal voltages and currents. Fourth order induction motor model is used and speed is considered as a parameter. The performance of the natural observer is similar to the conventional observer. The speed of an induction motor is estimated by MATLAB simulation under different speed and load conditions. Estimated values along with other measured states are used for closed loop control. The simulation results show that the natural observer is also effective for parallel connected induction motor drive.

Keywords: natural observer, adaptive observer, sensorless control

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2477