**Commenced**in January 2007

**Frequency:**Monthly

**Edition:**International

**Paper Count:**32722

##### Derivation of Fractional Black-Scholes Equations Driven by Fractional G-Brownian Motion and Their Application in European Option Pricing

**Authors:**
Changhong Guo,
Shaomei Fang,
Yong He

**Abstract:**

**Keywords:**
European option pricing,
fractional Black-Scholes
equations,
fractional G-Brownian motion,
Taylor’s series of fractional
order,
uncertain volatility.

**References:**

[1] F. Black and M. Scholes, The pricing of options and corporate liabilities, J. Political Economy, 81 (1973) 673–659.

[2] H. G. Sun, Y. Zhang, D. Baleanu, W. Chen and Y. Q. Chen, A new collection of real world applications of fractional calculus in science and engineering, Commun. Nonlinear Sci. Numer. Simulat., 64 (2018) 213–231.

[3] W. Wyss, The fractional Black-Scholes equation, Fract. Calc. Appl. Anal., 3(1) (2000) 51–61.

[4] A. Cartea and D. del-Castillo-Negrete, Fractional diffusion models of option prices in markets with jumps, Phys. A, 374(2) (2007) 749–763.

[5] G. Jumarie, Stock exchange fractional dynamics defined as fractional exponential growth driven by (usual) Gaussian white noise. Application to fractional Black-Scholes equations, Insurance: Mathematics and Economics, 42(1) (2008):271–287.

[6] G. Jumarie, Derivation and solutions of some fractional Black-Scholes equations in coarse-grained space and time. Application to Merton’s optimal portfolio, Comput. Math. Appl., 59(3) ( 2010) 1142–1164.

[7] J. R. Liang, J. Wang, W. J. Zhang, W. Y. Qiu and F. Y. Ren, Option pricing of a bi-fractional Black-Merton-Scholes model with the Hurst exponent H in 1 2 , 1, Appl. Math. Lett., 23(8) (2010) 859–863.

[8] J. R. Liang, J. Wang, W. J. Zhang, W. Y. Qiu and F. Y. Ren, The solutions to a bi-fractional Black-Scholes-Merton differential equation, Int. J. Pure Appl. Math., 58(1) (2010) 99–112.

[9] W. T. Chen, X. Xu and S. P. Zhu, Analytically pricing European-style options under the modified Black-Scholes equation with a spatial-fractional derivative, Q. Appl. Math. 72(3) (2014) 597–611.

[10] S. Kumar, A. Yildirim, Y. Khan, H.Jafari, K.Sayevand and L. Wei, Analytical solution of fractional Black-Scholes European option pricing equation by using Laplace transform, J. Fract. Calc. Appl.. 2(8) (2012) 1–9.

[11] Z. D. Cen, J. Huang , A. M. Xu and A. B. Le, Numerical approximation of a time-fractional Black-Scholes equation, Comput. Math. Appl., 75 (2018) 2874–2887.

[12] W. T. Chen, K. Du and X. Z. Qiu, Analytic properties of American option prices under a modified Black-Scholes equation with spatial fractional derivatives, Phys. A, 491 (2018) 37–44.

[13] S. Haq, M. Hussain, Selection of shape parameter in radial basis functions for solution of time-fractional Black-Scholes models, Appl. Math. Comput., 335 (2018) 248–263.

[14] A. W. Lo and A. C. MacKinlay, Stock market prices do not follow random walks: Evidence from a simple specification test, Rev. Financ. Stud. 1(1) (1988) 41–66.

[15] S. Peng, G-expectation, G-Brownian motion and related stochastic calculus of Itˆo’s type, In Stochastic Analysis and Applications, The Able Symposium 2005, Abel Symposia 2, Edit Benth et al., 541–567 (2007).

[16] S. Peng, G-Brownian motion and dynamic risk measure under volatility uncertainty, Preprint: arXiv:0711.2834v1

[math.PR] 19 Nov 2007.

[17] S. Peng, Multi-dimensional G-Brownian motion and related stochastic calculus under G-expectation, Stochastic Process. Appl., 118(12), 2223–2253 (2008).

[18] S. Peng, Nonlinear expectations and stochastic calculus under uncertainty, Springer, Berlin, Heidelberg, (2019).

[19] Z. Chen and L. Epstein, Ambiguity, risk, and asset returns in continuous time, Econometrica, 70(4) (2002) 1403–1443.

[20] L. G. Epstein and S. Ji, Ambiguous volatility and asset pricing in continuous time, Review of Financial Studies, 26(7) (2013) 1740–1786.

[21] C. H. Guo, S. M. Fang and Y. He, A generalized stochastic process: fractional G-Brownian motion, Sumbitted. (2020).

[22] C. H. Guo, S. M. Fang and Y. He, Fractional G-Brownian motion and its application to mathematical finance, Sumbitted. (2020).

[23] I. Podlubny, Fractional differential equations, Academic Press, New York (1999).

[24] G. Jumarie, On the representation of fractional Brownian motion as an integral with respect to (dt)α, Appl. Math. Lett., 18(7) (2005) 739–748.

[25] G. Jumarie, Modified Riemann-Liouville derivative and fractional Taylor series of nondifferentiable functions further results, Comput. Math. Appl., 51 (2006) 1367–1376.

[26] G. Jumarie, Fractionalization of the complex-valued Brownian motion of order n using Riemann-Liouville derivative. Applications to mathematical finance and stochastic mechanics, Chaos Solitons Fractals, 28(5) (2006) 1285–1305.

[27] N. Privault, Stochastic finance. An introduction with market examples, Studies in Mathematics De Gruyter, 2013.

[28] F. Biagini, Y. Hu, B. /Oksendal and T. Zhang, Stochastic calculus for fractional Brownian motion and applications, Springer-Verlag, London, 2008.

[29] C. Necula, Option pricing in a fractional Brownian motion environment, Mathematical Reports, 2(3) (2002) 259–273.