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Abstract—In this paper, fractional Black-Scholes models for the
European option pricing were established based on the fractional
G-Brownian motion (fGBm), which generalizes the concepts of
the classical Brownian motion, fractional Brownian motion and
the G-Brownian motion, and that can be used to be a tool for
considering the long range dependence and uncertain volatility
for the financial markets simultaneously. A generalized fractional
Black-Scholes equation (FBSE) was derived by using the Taylor’s
series of fractional order and the theory of absence of arbitrage.
Finally, some explicit option pricing formulas for the European call
option and put option under the FBSE were also solved, which
extended the classical option pricing formulas given by F. Black and
M. Scholes.

Keywords—European option pricing, fractional Black-Scholes
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I. INTRODUCTION

S INCE the celebrated Black-Scholes (BS) model was

proposed to price the stock options, the well-known

Black-Scholes equation and formulas have become the most

popular methods for pricing the options and other financial

derivatives [1]. Meanwhile, some fractal structures of the

financial markets have been discovered in recent years, and

thus some fractional calculus were applied in the fields to

extend the mathematical finance theory [2]. Thus combining

the classical BS equation, some fractional BS equation were

established for the option pricing. Wyss firstly deduced the

time-fractional BS equation to price the European call option

and then gave the complete solution of the equation by Laplace

and Mellin transforms [3]. Cartea and del-Castillo-Negrete

obtained some fractional partial differential equation to model

the option prices in markets with jumps and priced the barrier

option[4]. Later, Jumarie adopted the Maruyama’s notation and

selected the dynamical equation for the stock value x(t) as

dx = μxdt+ σxdb(t, α) = μxdt+ σxω(t)(dt)α, (1)

where x = x(t) and 0 < α < 1, then applied the Taylor’s

series of fractional order to derive the following fractional BS
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models for stock exchange dynamics [5],

∂αP
∂tα =

[
r

(1−α)!P − rxα ∂αP
∂xα

]
t1−α

− (α!)3[(1−α)!]2

Γ(1+2α) σ2x2α ∂2αP
∂x2α .

(2)

After that, Jumarie promoted his previous work and gave

out an optimal fractional Mertons portfolio, which has

wider applications in the actual financial market [6]. In

2010, Liang, et al . [7], [8] derived some bi-fractional

Black-Scholes-Merton models for the option pricing with

the assumption the stock price S(t) satisfying the fractional

exponential equation

(dS)2H = μS2H(dt)2H + σS2HdBH(t), 0 < H < 1, (3)

and they obtained the analytical solutions for these models

with the help of the Laplace transform and Fourier transform

technique. Recently, Chen et al . also derived European-style

spatial-fractional BS equation under the finite moment log

stable(FMLS) model and found some explicit closed-form

analytical solutions for the model [9]. For other models of

the time/spatial-fractional BS equations and their analytical

or numerical solutions, we refer readers to [10], [11], [12],

[13], and reference therein. However, whether the classical

BS equation or the above mentioned fractional BS models,

they are under the same assumptions that the dynamical

equation for the stock value follows as a stochastic differential

equation, where the source of randomness were taken as the

classical Brownian motion(Bm) or the fractional Brownian

motion(fBm), as seen in (1) and (3). Although compared to

the classical Bm, the fBm has more advantages in describing

the long-range dependency or persistence in the financial

markets[14], they are still not completely consistent with

the actual stock movement. One of the incompatibilities

is not considering the uncertainty, especially the volatility

uncertainty for the stock price. For considering the volatility

uncertainty, Peng proposed a formal mathematical approach

under the framework of nonlinear expectation and the related

G-Brownian motion (GBm) in some sublinear space (Ω,H, Ê)
[15], [16], [17], [18]. Under the nonlinear expectation space

framework, Chen and Epstein obtained a time consistent

G-expectation bid-ask dynamic pricing mechanism for the

European contingent claim in the uncertainty financial market

[19]. Epstein and Ji also studied the utility uncertainty

application in economics [20]. Thus in order to make

full use of the advantages of long-range dependency from

the fGm and the volatility uncertainty from GBm, we

World Academy of Science, Engineering and Technology
International Journal of Mathematical and Computational Sciences

 Vol:15, No:3, 2021 

24International Scholarly and Scientific Research & Innovation 15(3) 2021 ISNI:0000000091950263

O
pe

n 
Sc

ie
nc

e 
In

de
x,

 M
at

he
m

at
ic

al
 a

nd
 C

om
pu

ta
tio

na
l S

ci
en

ce
s 

V
ol

:1
5,

 N
o:

3,
 2

02
1 

pu
bl

ic
at

io
ns

.w
as

et
.o

rg
/1

00
11

89
4.

pd
f



introduced a generalized concept called fractional G-Brownian

motion(fGBm), which generalize the concepts of the classical

Bm, fBm and GBm [21], [22]. And we believe that the fGBm

is more suitable to capture the intrinsic characteristics of the

financial markets, especially in considering the long-range

dependency and uncertainty simultaneously. Thus in this

paper, we are going to consider that the dynamics of the stock

prices follows a fractional stochastic differential equation,

where the source of randomness was driven by the generalized

fGBm, and propose some fractional Black-Scholes models for

the European option pricing. The main techniques are the

fractional order Taylor’s formulas in fractional calculus and

the stochastic analysis for the fGBm.

The rest of paper is organized as follows. In Section II,

we summarize some results of the related fractional calculus,

especially including the Taylor’s series of fractional order,

and recall some for preliminaries for the fGBm. In Section

III, we will derive the time spatial fractional Black-Scholes

equations (FBSE)(49) driven by the fGBm, which generalizes

the obtained fractional models. In Section IV, we obtain the

explicit option pricing formulas for the European call option

and put option governed by the FBSE (49), respectively. The

last Section V offers the conclusion.

II. SOME PRELIMINARIES

In this section, we first recall some preliminaries about the

fractional calculus [23], Taylor’s series of fractional order[24],

[25], [26], and fractional G-Brownian motion [21], [22].

A. Fractional Calculus and Taylor’s Series of Fractional
Order

Definition 1: (Riemann-Liouville fractional integral) Let

f(x) be piecewise continuous on (0,∞) and integrable on

any finite subinterval of [0,∞). Then for x > 0 we call

Iαf(x) =
1

Γ(α)

∫ x

0

(x− t)α−1f(t)dt, α > 0, (4)

the Riemann-Liouville fractional integral of f(x) of order

α, where Γ(α) is the Gamma function with Γ(α) =∫∞
0

xα−1 exp(−x)dx.

Definition 2: (Riemann-Liouville fractional derivative) Let

f(x) be a function in Definition 1 and let α > 0. Let m be the

smallest integer that exceeds α. Then the Riemann-Liouville

fractional derivative of f(x) of order α is defined as

R
0 D

αf(x) = dm

dxm [Im−αf(x)]

= 1
Γ(m−α)

dm

dxm

[∫ x

0

(x− t)m−α−1f(t)dt

]
.

(5)

Definition 3: (Caputo fractional derivative) Let f(x) be a

function in Definition 1 and let α > 0. Let m be the smallest

integer that exceeds α. Then the Caputo fractional derivative

of f(x) of order α is defined as

C
0 D

αf(x) = Im−α
[

dm

dxm f(x)
]

= 1
Γ(m−α)

∫ x

0

(x− t)m−α−1f (m)(t)dt.
(6)

Here we need to point out that the definitions for the

fractional derivative of f(x) in Definition 2 and Definition 3

are not equivalent. Since the Caputo fractional derivative has

“good physical properties” as, for example that the derivative

of a constant is zero or that Cauchy problems requires initial

conditions formulated in terms of integer order derivatives

interpreted as initial position, initial velocity, etc[23]. Thus in

this paper we mainly adopt the Caputo fractional derivative,

and for convenience we denote

Dαf(x) = f (α)(x) =
dαf(x)

dxα
=C

0 Dαf(x), (7)

and

Dα
xf(x, y) = f (α)

x (x, y) =
dαf(x, y)

dxα
=C

0 Dαf(x, y), (8)

for the fractional derivative and the fractional partial derivative,

respectively.

Definition 4: Let f : R → R, x → f(x) denote a

continuous (but not necessarily differentiable) function and

let h > 0 denote a constant discretization span. Define the

forward operator FW (h), i. e.

FW (h)f(x) := f(x+ h),

then the fractional difference of order α, 0 < α ≤ 1, of f(x)
is defined by the expression

Δf(x) := (FW − 1)αf(x)

=
∞∑
k=0

(−1)k
(
α
k

)
f [x+ (α− k)h].

(9)

Based on the definition of the forward operator, there holds

the following results, whose proofs can be seen in [5], [24],

[25], [26], and reference therein.

Lemma 1: The following equality holds,

fα(x) = lim
h↓0

Δf(x)

hα
. (10)

Lemma 2: We assume that f(x) : R → R is the continuous

function and has fractional derivative of order α, 0 < α ≤ 1.

Then the following important relations hold,

Δαf ≈ Γ(1 + α)Δf, (11)

Δαf =
1

Γ(2− α)
f1−α(Δf)α, (12)

or in continuous form

dαf ≈ Γ(1 + α)df, (13)

dαf =
1

Γ(2− α)
f1−α(df)α. (14)

Proposition 1: (Taylor’s series of fractional order) Assume

that the continuous function f : R → R, x → f(x) has

fractional derivative of order kα, for any positive integer k
and any α, 0 < α ≤ 1, then the following equality holds,

which is

f(x+ h) =

∞∑
k=0

hαk

Γ(1 + αk)
f (αk)(x), 0 < α ≤ 1, (15)

where f (αk)(x) is the derivative of order αk of f(x).
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Proposition 2: (Multivariable fractional Taylor’s series)

Assume that the continuous function f : R×R → R, (x, y) →
f(x, y) has fractional partial derivative of order kα. Then for

any α, 0 < α ≤ 1, one has the series

f(x+ h, y + l) = Eα(h
αDα

x )Eα(l
αDα

y )f(x, y)
= Eα(l

αDα
y )Eα(h

αDα
x )f(x, y)

= Eα{(lDx + lDy)
α}f(x, y),

(16)

where Eα(x) denotes the Mittag-Leffler functions defined by

the expression

Eα(x) :=

∞∑
k=0

xk

Γ(1 + αk)
. (17)

If taking the approximation of order 2α, one has

f(x+ h, y + l)

≈ f(x, y) + 1
Γ(1+α)

(
f
(α)
x (x, y)hα + f

(α)
y (x, y)lα

)
+ 1

2Γ(1+α)

(
f
(2α)
x (x, y)h2α + f

(2α)
y (x, y)l2α

)
+ 1

[Γ(1+α)]2
f
(2α)
xy (x, y)hαlα.

(18)

Lemma 3: (Integration with respect to (dt)α) Let f(t)
denote a continuous R → R function. Then its integral with

respect to (dt)α, 0 < α ≤ 1 is defined by∫ t

0

f(τ)(dτ)α = α

∫ t

0

(t− τ)α−1f(τ)dτ. (19)

If taking f(τ) = τγ for special case, one obtains∫ t

0

τγ(dτ)α =
Γ(1 + α)Γ(1 + γ)

Γ(1 + α+ γ)
tα+γ . (20)

B. Fractional G-Brownian Motion

In this subsection, we recall some results for the sublinear

expectation space and fGBm from [21], [22] that we will need.

For other preliminaries about the GBm, we refer readers to

[15], [16], [17], [18], and reference therein.

Definition 5: (Sublinear expectation) A sublinear

expectation Ê is a functional Ê : H → R satisfying

(1) [Monotonicity] Ê[X] ≥ Ê[Y ] if X ≥ Y .

(2) [Constant preserving] Ê[c] = c for c ∈ R.

(3) [Sub-additivity] For each X,Y ∈ H, Ê[X + Y ] ≤
Ê[X] + Ê[Y ].

(4) [Positive homogeneity] Ê[λX] = λÊ[X] for λ ≥ 0.

Then the triple (Ω,H, Ê) is called a sublinear expectation

space.

Definition 6: (Distribution) Let X = (X1, · · · , Xn) be a

given n-dimensional random vector in a sublinear expectation

space (Ω,H, Ê). We define a functional on Cl,Lip(R
n) by

FX [ϕ] = Ê[ϕ(X)] : ϕ ∈ Cl,Lip(R
n) → R.

Then FX is called the distribution of X under Ê.

Remark 1: For a random variable X on the sublinear

expectation space (Ω,H, Ê), the distribution of X has the

following four typical parameters

μ = −Ê[−X], μ = Ê[X], σ2 = −Ê[−X2], σ2 = Ê[X2],

where [μ, μ] and [σ2, σ2] characterize the mean-uncertainty

and the variance-uncertainty of X respectively.

Definition 7: (Identically distributed) Let X1 and X2 be

two random variables defined in sublinear expectation space

(Ω1,H1, Ê1) and (Ω2,H2, Ê2). They are called identically

distributed, denoted by X1
d
= X2, if

Ê1 [ϕ(X1)] = Ê2 [ϕ(X2)] for ϕ ∈ Cl,Lip(R).

Definition 8: (Independent) In the sublinear expectation

space (Ω,H, Ê), a random variable Y is said to be independent

from another random variable X ∈ H under Ê), if for each

function ϕ ∈ Cl,Lip(R
2),

Ê [ϕ(X,Y )] = Ê

[
Ê [ϕ(x, Y )] |x=X

]
.

Furthermore, Y is called an independent copy of X if Y
d
= X

and Y is independent from X .

Definition 9: (G-normal distribution) A random variable X
in a sublinear expectation space (Ω,H, Ê) is called G-normal

distributed if

aX + bX
d
=

√
a2 + b2X, for a, b ≥ 0,

where X is an independent copy of X .

Remark 2: It is easy to find that if X is G-normal

distributed, then

μ = −Ê[−X] = μ = Ê[X] = 0,

and thus we denote the G-normal distribution as X ∼
N ({0}, [σ2, σ2]

)
. And here, we point out that the variance

uncertainty of the G-normal distribution is the source of the

volatility uncertainty of the stocks’ price processes.

Definition 10: (G-Brownian motion)[18] A stochastic

process BG(t)t∈R+ in a sublinear expectation space (Ω,H, Ê)
is called a G-Brownian motion (GBm) if the following

properties are satisfied:

(1) BG(0) = 0,

(2) For each t, s ≥ 0, the increment BG(t + s) − BG(t)
is G-normal distributed by N ({0}, [sσ2, sσ2]

)
, where σ2 =

−Ê[−B2
G(1)] and σ2 = Ê[B2

G(1)], and is independent from

(BG(t1), BG(t2), · · ·, BG(tn), for each n ∈ N and 0 ≤ t1 ≤
· · · ≤ tn ≤ t.

In order to consider the long-range dependency and

uncertainty in the financial markets simultaneously, we

introduces a generalized concept called fractional G-Brownian

motion(fGBm), which was defined as follows.

Definition 11: (Fractional G-Brownian motion)[21], [22]

Let H ∈ (0, 1), a continuous stochastic process BFG(t)t∈R+

in a sublinear expectation space (Ω,H, Ê) is called fractional

G-Brownian motion (fGBm) with Hurst index H if

(1) BFG(0) = 0, and for all t ≥ 0

−Ê [−BFG(t)] = Ê [BFG(t)] = 0. (21)

(2) For all s, t ≥ 0, there holds

Ê [BFG(t)BFG(s)] =
1
2σ

2
(
t2H + s2H − |t− s|2H)

,

−Ê [−BFG(t)BFG(s)] =
1
2σ

2
(
t2H + s2H − |t− s|2H)

,
(22)

where σ2 = −Ê[−B2
FG(1)] and σ2 = Ê[B2

FG(1)].
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(3) For each t, s ≥ 0, the increment BFG(t+ s)−BFG(s)
is identically distributed with BFG(t).

Remark 3: The fGBm BFG(t)t∈R+ generalizes the

concepts of the classical Brownian motion B(t)t∈R+

[27], fractional Brownian motion BH(t)t∈R+ [28] and the

G-Brownian motion BG(t)t∈R+ [18]. And it can posses the

long-range dependence property and consider the volatility

uncertainty simultaneously.

Proposition 3: [21], [22] For the fGBm BFG(t)t∈R+ , there

holds

−Ê [−BFG(t)] = Ê [BFG(t)] = 0, (23)

−Ê
[−B2

FG(t)
]
= σ2t2H , Ê

[
B2

FG(t)
]
= σ2t2H . (24)

And also the fGBm has the self-similarity property as

a−HBFG(at)
d
= BFG(t), for a > 0. (25)

Based on the Definition 11 and Proposition 3, we can extend

the Maruyama’s notation for the fGBm as follows, which

plays an important role in the derivation of the fractional

Black-Scholes models.

Proposition 4: Extending the Maruyama’s notation for

fGBm BFG(t), we introduce and use the expression

dBFG(t) = ω̃(t)(dt)H , (26)

where 0 < H < 1 and ω̃(t) is G-normal distributed as

ω̃(t) ∼ N ({0}, [σ2, σ2]
)
, with σ2 = −Ê[−ω̃(t)2] and σ2 =

Ê[ω̃(t)2]. This also provides the mathematical expectation and

the variance as

Ê[dBFG(t)] = 0, Var[dBFG(t)] = Ê[ω̃(t)2](dt)2H . (27)

Remark 4: This expression (26) is considered to be as a

formal definition, and moreover it is an approximation only.

III. DERIVATION OF THE FRACTIONAL BS EQUATIONS

In this section, we will derive the time spatial fractional

Black-Scholes equations for the European option pricing

driven by the fGBm. First we suppose that the dynamics of

stock price S(t) follows as a fractional stochastic differential

equation

dαS = μ(t, S)dtα + σ(t, S)dBFG(t), (28)

where 0 < α ≤ 1, 0 < H < 1, μ(t, S) is the drift term, σ(t, S)
is the diffusion term, dBFG(t) is the fractional G-Brownian

process, as dBFG(t) = ω̃(t)(dt)H . For a special case that

μ(t, S) = μS and σ(t, S) = σS, then (28) becomes as

dαS = μSdtα + σSdBFG(t). (29)

First from Lemma 2, there arrives directly

dS ≈ 1

Γ(1 + α)
dαS, (30)

and

(dS)α = Γ(2− α)Sα−1dαS. (31)

Now let P = P (S, t) be the value of an option on a stock

at the time t, and according to the multivariable fractional

Taylor’s series (18) in Proposition 2, we have

ΔP = P (S +ΔS, t+ΔS)− P (S, t)

= 1
Γ(1+α)

[
P

(α)
S (ΔS)α + P

(α)
t (Δt)α

]
+ 1

Γ(1+2α)

[
P

(2α)
S (ΔS)2α + P

(2α)
t (Δt)2α

]
+ 1

[Γ(1+α)]2
P

(2α)
St (ΔS)α(Δt)α + · · · ,

(32)

which can be approximated as

dP ≈ 1
Γ(1+α)

[
P

(α)
S (dS)α + P

(α)
t (dt)α

]
+ 1

Γ(1+2α)

[
P

(2α)
S (dS)2α + P

(2α)
t (dt)2α

]
+ 1

[Γ(1+α)]2
P

(2α)
St (dS)α(dt)α.

(33)

Now from (29)-(31), there holds

(dS)2α = [(dS)α]
2

=
[
Γ(2− α)Sα−1dαS

]2
= [Γ(2− α)]2S2α−2 [μSdtα + σSdBFG(t)]

2

= [Γ(2− α)]2S2α−2

·
[
σ2S2

Ê[ω̃2(t)](dt)2H +O((dt)α)
]

≈ [Γ(2− α)]2S2ασ2
Ê[ω̃2(t)](dt)2H .

(34)

Substituting (34) into (33) and taking the approximation of

order (dt)2α, we obtain that if 2H > α,

dP =
1

Γ(1 + α)
P

(α)
S (dS)α +

1

Γ(1 + α)
P

(α)
t (dt)α, (35)

and if 0 < 2H ≤ α,

dP = 1
Γ(1+α)P

(α)
S (dS)α + 1

Γ(1+α)P
(α)
t (dt)α

+ [Γ(2−α)]2

Γ(1+2α) P
(2α)
S S2ασ2

Ê[ω̃(t)2](dt)2H .
(36)

In what follows, we mainly discuss the case 0 < 2H ≤ α.

First from (13) and (14), we have

(dt)α = Γ(2− α)tα−1dαt ≈ Γ(1+ α)Γ(2− α)tα−1dt, (37)

and substitute this equation into (36), we have

dP = 1
Γ(1+α)P

(α)
S (dS)α

+ 1
Γ(1+α)Γ(1 + α)Γ(2− α)tα−1P

(α)
t dt

+ [Γ(2−α)]2

Γ(1+2α) S
2ασ2

Ê[ω̃(t)2]Γ(1 + 2H)Γ(2− 2H)

·t2H−1P
(2α)
S dt.

(38)

Multiplying both side of (38) by Γ(1 + α) yields that

dαP = P
(α)
S (dS)α +

[
Γ(1 + α)Γ(2− α)tα−1P

(α)
t

+Γ(1+α)[Γ(2−α)]2Γ(1+2H)Γ(2−2H)σ2

Γ(1+2α) Ê[ω̃(t)2]

·t2H−1S2αP
(2α)
S

]
dt.

(39)

Meanwhile, it is possible to form a portfolio of stock and

options to offset the randomness, and here suppose that is

long λ shares and short 1 option. Thus the value V of the

portfolio at the time t is

V (t) = λS(t)− P (t), (40)
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where the minus sign is from the fact that the option is owed

rather than owned. Furthermore, the value of the portfolio

changes as

dV = λdS − dP. (41)

Multiplying both side of (41) by Γ(1+α) and combining (31)

and (39), we have

dαV = λdαS − dαP

=
[
λ 1

Γ(2−α)S
1−α − P

(α)
S

]
(dS)α

−
[
Γ(1 + α)Γ(2− α)tα−1P

(α)
t

+Γ(1+α)[Γ(2−α)]2Γ(1+2H)Γ(2−2H)σ2

Γ(1+2α) Ê[ω̃(t)2]

·t2H−1S2αP
(2α)
S

]
dt.

(42)

As one can see, the random term included in (dS)α can

be disappeared by choosing some suitable λ such that the

coefficient becomes to zero, that is

λ

Γ(2− α)
S1−α − P

(α)
S = 0, (43)

which implies

λ = Γ(2− α)Sα−1P
(α)
S . (44)

And this leaves

dαV = −
[
Γ(1 + α)Γ(2− α)tα−1P

(α)
t

+Γ(1+α)[Γ(2−α)]2Γ(1+2H)Γ(2−2H)σ2

Γ(1+2α) Ê[ω̃(t)2]

·t2H−1S2αP
(2α)
S

]
dt.

(45)

On the other hand, the fundamental condition for establishing

the price of an option is absence of arbitrage. Thus the

portfolio in riskless and its value must increase in accordance

with the risk-free interest rate. The interest accrued on 1 unit

of money over a time interval of length dt is 1rdt. So there

holds

dV = rV dt = r(λS − P )dt. (46)

Multiplying both side of (46) by Γ(1 + α), we obtain

dαV = Γ(1 + α)r(λS − P )

= Γ(1 + α)r
[
Γ(2− α)SαP

(α)
S − P

]
dt.

(47)

Equating (45) and (47) yields that

−Γ(1 + α)Γ(2− α)tα−1P
(α)
t

−Γ(1+α)[Γ(2−α)]2Γ(1+2H)Γ(2−2H)σ2

Γ(1+2α) Ê[ω̃(t)2]t2H−1S2αP
(2α)
S

= Γ(1 + α)r
[
Γ(2− α)SαP

(α)
S − P

]
,

(48)

which implies

P
(α)
t =

[
r

Γ(2−α)P − rSαP
(α)
S

]
t1−α

− [Γ(2−α)]2Γ(1+2H)Γ(2−2H)
Γ(1+2α) Ê[ω̃(t)2]

·t2H−ασ2S2αP
(2α)
S .

(49)

This is the fractional Black-Scholes equation (FBSE) driven

by fractional G-Brownian motion fGBm.

Remark 5: The term Ê[ω̃(t)2]σ2 in the FBSE (49) reflects

the effects of the volatility uncertainty of the stocks price

processes.

Remark 6: As we can see, the fractional Black-Scholes

equation (49) generalizes some well-known BS equations, for

some cases as follows

Case (1): if taking Ê[ω̃(t)2] = σ2 	= 1 and α = 1, then (49)

will become

Pt = rP − rSPS

−Γ(1+2H)Γ(2−2H)σ2

2 Ê[ω̃(t)2]t2H−1S2PSS ,
(50)

which is the same as fractional G-Black-Scholes equation [22]

∂V

∂t
+ rS

∂V

∂S
+HÊ

[
B2

G(1)
]
σ2S2t2H−1 ∂

2V

∂S2
= rV. (51)

The only difference is the coefficient of the second order

derivative term, since we adopt the the Maruyama’s notation

for fractional G-Brownian motion BFG(t) in Proposition 4.

Case (2): If we take Ê[ω̃(t)2] = σ2 = 1, α = 2H and

“σ” = Γ(1 + α)σ, then we get

P
(α)
t =

[
r

Γ(2−α)P − rSαP
(α)
S

]
t1−α

− [Γ(2−α)]2(Γ(1+α))3

Γ(1+2α) σ2S2αP
(2α)
S ,

(52)

which is the exact fractional Black-Scholes equation (2)

obtained by Jumarie in [5].

Case (3): if taking Ê[ω̃(t)2] = σ2 = 1 and α = 1, then (49)

will be reduced as

Pt = rP − rSPS

−Γ(1+2H)Γ(2−2H)σ2

2 t2H−1S2PSS ,
(53)

which is the fractional BS equation driven by the fBm BH(t)
[29]. (The only difference is also the coefficient):

∂V

∂t
+ rS

∂V

∂S
+Hσ2S2t2H−1 ∂

2V

∂S2
= rV. (54)

Case (4): for the most especial case as taking Ê[ω̃(t)2] = 1,

α = 1 and H = 1
2 , then it is simplified as

Pt + rSPS +
σ2

2
S2PSS = rP, (55)

which is exactly the classical BS equation obtained by Black

and Scholes [1].

Remark 7: Under the condition 0 < α < 2H , from (33)

and following the same way of the derivation for the fractional

Black-Scholes equation (49), we can obtain another fractional

Black-Scholes equation as

P
(α)
t + rt1−αSαP

(α)
S =

r

Γ(2− α)
t1−αP. (56)

IV. SOLUTIONS OF THE FRACTIONAL BS EQUATIONS

In this section, we will study the explicit option pricing

formulas for the European call option and put option governed

by the FBSE (49), respectively. The key terminal boundary

conditions for the European call option and put option are

P (S, T ) = max(S −K, 0), (57)

and

P (S, T ) = max(K − S, 0), (58)
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when t = T , where T is the maturity date of the option, and

K is the exercise price of the option. For simplicity, here we

consider the European call option for example, and for the

European put option, one can process the deduction in the

same way. Thus first from the FBSE (49), we have⎧⎪⎨⎪⎩
P

(α)
t =

[
r

Γ(2−α)P − rSαP
(α)
S

]
t1−α

+At2H−αS2αP
(2α)
S ,

P (S, T ) = max(S −K, 0),

(59)

where we denote

A = − [Γ(2− α)]2Γ(1 + 2H)Γ(2− 2H)

Γ(1 + 2α)
Ê[ω̃(t)2]σ2. (60)

Now we need to solve the boundary value problem (59). First

letting

P (S, t) = e−r(T−t)P̃ (S, t), (61)

then there holds

P
(α)
t (S, t)

= Dα
t

(
e−r(T−t)

)
P̃ (S, t) + e−r(T−t)P̃

(α)
t (S, t)

= re−r(T−t) t1−α

Γ(2−α) P̃ (S, t) + e−r(T−t)P̃
(α)
t (S, t).

(62)

Substituting (62) into (59), we have{
P̃

(α)
t = −rt1−αSαP̃

(α)
S +At2H−αS2αP̃

(2α)
S ,

P̃ (S, T ) = P (S, T ) = max(S −K, 0).
(63)

Now we make the change of variable as

P̃ (S, t) = Q(y, t), y = ln(S) + a, (64)

where a is a constant. Then there arrives

P̃
(α)
S = Qy

(
1
S

)α
,

P̃
(2α)
S = Qy

(
Γ(1−α)
Γ(1−2α)

(
1
S

)2α)
+Qyy

(
1
S

)2α
,

(65)

which implies

SαP̃
(α)
S = Qy, S2αP̃

(2α)
S =

Γ(1− α)

Γ(1− 2α)
Qy +Qyy. (66)

Substituting (66) into (63), we obtain⎧⎪⎪⎪⎨⎪⎪⎪⎩
Q

(α)
t (y, t) =

[
−rt1−α + AΓ(1−α)

Γ(1−2α) t
2H−α

]
Qy(y, t)

+At2H−αQyy(y, t),

Q(y, T ) = P̃ (S, T ) = P (S, T )
= max(S −K, 0) = max(ey −K, 0),

(67)

Again, we make the transformation as

Q(y, t) = R(z, t),
z = y − ln(K) + E(t− T ) + F

(
t2H − T 2H

)
,

(68)

where E and F are defined as

E =
rΓ(2− α)

α
, F = −AΓ(1− α)Γ(1 + 2H − α)

Γ(1− 2α)Γ(1 + 2H)
. (69)

Then we can compute that

R
(α)
t (z, t)

= 1
Γ(1−α)

∫ t

0

(t− s)−αR(1)
s (z, s)ds

= 1
Γ(1−α)

∫ t

0

(t− s)−α
[
Q(1)

z (z, s)(αE + 2HFt2H−1)

+Q
(1)
s (y, s)

]
ds

= 1
Γ(1−α)

∫ t

0

(t− s)−αQ(1)
s (y, s)ds

+Qy

[
αE

Γ(1−α)

∫ t

0

(t− s)−αds

+ 2HF
Γ(1−α)

∫ t

0
(t− s)−αt2H−1ds

]
= Q

(α)
t (y, t)

+Qy

[
αE

Γ(1−α)
t1−α

(1−α) +
2HF

Γ(1−α)
Γ(2H)Γ(1−α)
Γ(1+2H−α) t

2H−α
]

= Q
(α)
t (y, t) +Qy

[
αE

Γ(2−α) t
1−α + Γ(1+2H)F

Γ(1+2H−α) t
2H−α

]
= Q

(α)
t (y, t) +

[
rt1−α − AΓ(1−α)

Γ(1−2α) t
2H−α

]
Qy(y, t).

(70)

Thus from (67), there holds{
R

(α)
t (z, t) = At2H−αRzz(z, t),

R(z, T ) = max (K(ez − 1), 0) = RT (z).
(71)

If we denote the Fourier transform of f(x) as

f̂(ξ) = F(f(x)) =

∫ ∞

−∞
e−ix·ξf(x)dx,

and the inverse Fourier transform as

f(x) = F−1(f̂(ξ)) =
1

2π

∫ ∞

−∞
eix·ξ f̂(ξ)dξ.

Then taking the Fourier transform of (71), we have{
R̂

(α)
t (ξ, t) = Aξ2t2H−αR̂(ξ, t),

R̂(ξ, T ) = F (RT (z)) .
(72)

On the other hand, as we know, the following homogeneous

equation

y(α)(t) = a(t)y(t), y(T ) = YT , (73)

has the explicit solution, which can be expressed as

y(t) = y(T )Eα

{
−
∫ T

t

a(τ)(dτ)α

}
, (74)

where Eα(x) denotes the Mittag-Leffler functions defined in

(17). Thus the solution of (72) can be obtained as

R̂(ξ, t) = R̂(ξ, T )Eα

{
−Aξ2

∫ T

t

τ2H−α(dτ)α

}
= R̂(ξ, T )Eα

{
−Γ(1+α)Γ(1+2H−α)Aξ2

Γ(1+2H)

(
T 2H − t2H

)}
= R̂(ξ, T )G(ξ, t),

where G(ξ, t) = Eα

{
−Γ(1+α)Γ(1+2H−α)Aξ2

Γ(1+2H)

(
T 2H − t2H

)}
.

If we denote g(z, t) be the inverse Fourier transform of

G(ξ, t), we have

g(z, t) = F−1
[
Eα

{
− Γ(1+α)Γ(1+2H−α)Aξ2

Γ(1+2H)(
T 2H − t2H

)}]
,

(75)
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and furthermore

R(z, t) = F−1
[
R̂(ξ, T )G(ξ, t)

]
= F−1

(
R̂(ξ, T )

)
∗ F−1 (G(ξ, T ))

= RT (z) ∗ g(z, t).
(76)

This is the exact solution of the problem (71). Going back the

original of variables, we can obtain the explicit solution for

the problem (59) and thus get the option pricing formulas for

the European call option. For the European put option, one

can obtain the similar explicit formulas.

Remark 8: For the special case Ê[ω̃(t)2] = 1, α = 1 and

H = 1
2 , the explicit solution from (61), (64), (68), and (76)

is simplified to the classical Black-Scholes formulas for the

European call option pricing[1].

V. CONCLUSION

In this paper, we introduced a concept for some stochastic

processes called fractional G-Brownian motion (fGBm), which

generalizes the concepts of the classical Bm, fBm and GBm.

Since the fGBm can be used to be a tool for considering the

long range dependence and uncertain volatility simultaneously,

it is more suitable to capture the intrinsic characteristics of the

financial markets, so we employ the fGBm to the mathematical

finance, especially for the option pricing. Combining the

fractional calculus, we derived some fractional Black-Scholes

models for the European option pricing driven by the fGBm

with the help of the Taylor’s series of fractional order and the

theory of absence of arbitrage, which generalizes the obtained

fractional models. And furthermore, the explicit option pricing

formulas for the European call option and put option under the

fractional model were also obtained, which also generalized

the classical Black-Scholes formulas given by Black and

Scholes [1]. Since the fractional Black-Scholes models were

established based on the fGBm, we do believe it is better

to describe the dynamics of the stock prices and give better

valuation for the option pricing. For other researches about the

fractional Black-Scholes models driven by the fGBm and their

applications in other financial derivatives, we are working on

it and will be seen in our forthcoming paper.
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