Search results for: wave finite element
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 2440

Search results for: wave finite element

1600 Migration of a Drop in Simple Shear Flow at Finite Reynolds Numbers: Size and Viscosity Ratio Effects

Authors: M. Bayareh, S. Mortazavi

Abstract:

The migration of a deformable drop in simple shear flow at finite Reynolds numbers is investigated numerically by solving the full Navier-Stokes equations using a finite difference/front tracking method. The objectives of this study are to examine the effectiveness of the present approach to predict the migration of a drop in a shear flow and to investigate the behavior of the drop migration with different drop sizes and non-unity viscosity ratios. It is shown that the drop deformation depends strongly on the capillary number, so that; the proper non-dimensional number for the interfacial tension is the capillary number. The rate of migration increased with increasing the drop radius. In other words, the required time for drop migration to the centreline decreases. As the viscosity ratio increases, the drop rotates more slowly and the lubrication force becomes stronger. The increased lubrication force makes it easier for the drop to migrate to the centre of the channel. The migration velocity of the drop vanishes as the drop reaches the centreline under viscosity ratio of one and non-unity viscosity ratios. To validate the present calculations, some typical results are compared with available experimental and theoretical data.

Keywords: drop migration, shear flow, front-tracking method, finite difference method.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2015
1599 A Strategy for a Robust Design of Cracked Stiffened Panels

Authors: Francesco Caputo, Giuseppe Lamanna, Alessandro Soprano

Abstract:

This work is focused on the numerical prediction of the fracture resistance of a flat stiffened panel made of the aluminium alloy 2024 T3 under a monotonic traction condition. The performed numerical simulations have been based on the micromechanical Gurson-Tvergaard (GT) model for ductile damage. The applicability of the GT model to this kind of structural problems has been studied and assessed by comparing numerical results, obtained by using the WARP 3D finite element code, with experimental data available in literature. In the sequel a home-made procedure is presented, which aims to increase the residual strength of a cracked stiffened aluminum panel and which is based on the stochastic design improvement (SDI) technique; a whole application example is then given to illustrate the said technique.

Keywords: Residual strength, R-Curve, Gurson model, SDI.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1537
1598 Limit State of Heterogeneous Smart Structures under Unknown Cyclic Loading

Authors: M. Chen, S-Q. Zhang, X. Wang, D. Tate

Abstract:

This paper presents a numerical solution, namely limit and shakedown analysis, to predict the safety state of smart structures made of heterogeneous materials under unknown cyclic loadings, for instance, the flexure hinge in the micro-positioning stage driven by piezoelectric actuator. In combination of homogenization theory and finite-element method (FEM), the safety evaluation problem is converted to a large-scale nonlinear optimization programming for an acceptable bounded loading as the design reference. Furthermore, a general numerical scheme integrated with the FEM and interior-point-algorithm based optimization tool is developed, which makes the practical application possible.

Keywords: Limit state, shakedown analysis, homogenization, heterogeneous structure.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 844
1597 Exact Analysis of Resonance Frequencies of Simply Supported Cylindrical Shells

Authors: A. Farshidianfar, P. Oliazadeh, M. H. Farshidianfar

Abstract:

In order to study the free vibration of simply supported circular cylindrical shells; an analytical procedure is developed and discussed in detail. To identify its’ validity, the exact technique was applied to four different shell theories 1) Soedel, 2) Flugge, 3) Morley-Koiter, and 4) Donnell. The exact procedure was compared favorably with experimental results and those obtained using the numerical finite element method. A literature review reveals that beam functions are used extensively as an approximation for simply supported boundary conditions. The effects of this approximate method were also investigated on the natural frequencies by comparing results with those of the exact analysis.

Keywords: Circular Cylindrical Shell, Free Vibration, Natural Frequency.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3577
1596 Development of 25A-Size Three-Layer Metal Gasket by Using FEM Simulation

Authors: Shigeyuki Haruyama, I Made Gatot Karohika, Akinori Sato, Didik Nurhadiyanto, Ken Kaminishi

Abstract:

Contact width and contact stress are important design parameters for optimizing corrugated metal gasket performance based on elastic and plastic contact stress. In this study, we used a three-layer metal gasket with Al, Cu, Ni as the outer layer, respectively. A finite element method was employed to develop simulation solution. The gasket model was simulated by using two simulation stages which are forming and tightening simulation. The simulation result shows that aluminum with tangent modulus, Ehal = Eal/150 has the highest slope for contact width. The slope of contact width for plastic mode gasket was higher than the elastic mode gasket.

Keywords: Contact width, contact stress, layer, metal gasket, corrugated, simulation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1610
1595 Design of Liquid Crystal Based Tunable Reflectarray Antenna Using Slot Embedded Patch Element Configurations

Authors: M. Y. Ismail, M. Inam

Abstract:

This paper presents the design and analysis of Liquid Crystal (LC) based tunable reflectarray antenna with different design configurations within X-band frequency range. The effect of LC volume used for unit cell element on frequency tunability and reflection loss performance has been investigated. Moreover different slot embedded patch element configurations have been proposed for LC based tunable reflectarray antenna design with enhanced performance. The detailed fabrication and measurement procedure for different LC based unit cells has been presented. The waveguide scattering parameter measured results demonstrated that by using the circular slot embedded patch elements, the frequency tunability and dynamic phase range can be increased from 180MHz to 200MHz and 120° to 124° respectively. Furthermore the circular slot embedded patch element can be designed at 10GHz resonant frequency with a patch volume of 2.71mm3 as compared to 3.47mm3 required for rectangular patch without slot.

Keywords: Liquid crystal, Tunable reflectarray, Frequency tunability, Dynamic phase range.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2425
1594 Design of Liquid Crystal Based Tunable Reflectarray Antenna Using Slot Embedded Patch Element Configurations

Authors: M. Y. Ismail, M. Inam

Abstract:

This paper presents the design and analysis of Liquid Crystal (LC) based tunable reflectarray antenna with different design configurations within X-band frequency range. The effect of LC volume used for unit cell element on frequency tunability and reflection loss performance has been investigated. Moreover different slot embedded patch element configurations have been proposed for LC based tunable reflectarray antenna design with enhanced performance. The detailed fabrication and measurement procedure for different LC based unit cells has been presented. The waveguide scattering parameter measured results demonstrated that by using the circular slot embedded patch elements, the frequency tunability and dynamic phase range can be increased from 180MHz to 200MHz and 120° to 124° respectively. Furthermore the circular slot embedded patch element can be designed at 10GHz resonant frequency with a patch volume of 2.71mm3 as compared to 3.47mm3 required for rectangular patch without slot.

Keywords: Liquid crystal, Tunable reflectarray, Frequency tunability, Dynamic phase range.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1212
1593 Mathematical Modeling of Elastically Creeping State of Arbitrarily Orientated Cavities in the Transversally Isotropic Massif

Authors: N. Azhikhanov, T. Turimbetov, Zh. Masanov, N. Zhunisov

Abstract:

It can be determined in preference between representative mechanical and mathematical model of elasticcreeping deformation of transversally isotropic array with doubly periodic system of tilted slots, and offer of the finite elements calculation scheme, and inspection of the states of two diagonal arbitrary profile cavities of deep inception, and in setting up the tense and dislocation fields distribution nature in computing processes.

Keywords: Mathematical model, tunnel, transversally isotropic, finite elements.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1589
1592 Study of Currents and Temperature of Induced Spur Gear using 2d Simulation

Authors: N. Barka, P. Bocher, A. Chebak, J. Brousseau, D. S. Ramdenee

Abstract:

This paper presents the study of induced currents and temperature distribution in gear heated by induction process using 2D finite element (FE) model. The model is developed by coupling Maxwell and heat transfer equations into a multi-physics model. The obtained results allow comparing the medium frequency (MF) and high frequency (HF) cases and the effect of machine parameters on the evolution of induced currents and temperature during heating. The sensitivity study of the temperature profile is conducted and the case hardness is predicted using the final temperature profile. These results are validated using tests and give a good understanding of phenomena during heating process.

Keywords: 2D model, induction heating, spur gear, induced currents, experimental validation

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1611
1591 The Finite Difference Scheme for the Suspended String Equation with the Nonlinear Damping Term

Authors: Jaipong Kasemsuwan

Abstract:

A numerical solution of the initial boundary value problem of the suspended string vibrating equation with the particular nonlinear damping term based on the finite difference scheme is presented in this paper. The investigation of how the second and third power terms of the nonlinear term affect the vibration characteristic. We compare the vibration amplitude as a result of the third power nonlinear damping with the second power obtained from previous report provided that the same initial shape and initial velocities are assumed. The comparison results show that the vibration amplitude is inversely proportional to the coefficient of the damping term for the third power nonlinear damping case, while the vibration amplitude is proportional to the coefficient of the damping term in the second power nonlinear damping case.

Keywords: Finite-difference method, the nonlinear damped equation, the numerical simulation, the suspended string equation

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1448
1590 A High Order Theory for Functionally Graded Shell

Authors: V. V. Zozulya

Abstract:

New theory for functionally graded (FG) shell based on expansion of the equations of elasticity for functionally graded materials (GFMs) into Legendre polynomials series has been developed. Stress and strain tensors, vectors of displacements, traction and body forces have been expanded into Legendre polynomials series in a thickness coordinate. In the same way functions that describe functionally graded relations has been also expanded. Thereby all equations of elasticity including Hook-s law have been transformed to corresponding equations for Fourier coefficients. Then system of differential equations in term of displacements and boundary conditions for Fourier coefficients has been obtained. Cases of the first and second approximations have been considered in more details. For obtained boundary-value problems solution finite element (FE) has been used of Numerical calculations have been done with Comsol Multiphysics and Matlab.

Keywords: Shell, FEM, FGM, legendre polynomial.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1586
1589 Dissimilar Materials Joint and Effect of Angle Junction on Stress Distribution at Interface

Authors: Ali Baladi, Alireza Fallahi Arezoodar

Abstract:

in dissimilar material joints, failure often occurs along the interface between two materials due to stress singularity. Stress distribution and its concentration depend on materials and geometry of the junction. Inhomogenity of stress distribution at the interface of junction of two materials with different elastic modules and stress concentration in this zone are the main factors resulting in rupture of the junction. Effect of joining angle in the interface of aluminum-polycarbonate will be discussed in this paper. Computer simulation and finite element analysis by ABAQUS showed that convex interfacial joint leads to stress reduction at junction corners in compare with straight joint. This finding is confirmed by photoelastic experimental results.

Keywords: Elastic Modules, Stress Concentration, JoiningAngle, Photoelastic.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2185
1588 Selection of Rayleigh Damping Coefficients for Seismic Response Analysis of Soil Layers

Authors: Huai-Feng Wang, Meng-Lin Lou, Ru-Lin Zhang

Abstract:

One good analysis method in seismic response analysis is direct time integration, which widely adopts Rayleigh damping. An approach is presented for selection of Rayleigh damping coefficients to be used in seismic analyses to produce a response that is consistent with Modal damping response. In the presented approach, the expression of the error of peak response, acquired through complete quadratic combination method, and Rayleigh damping coefficients was set up and then the coefficients were produced by minimizing the error. Two finite element modes of soil layers, excited by 28 seismic waves, were used to demonstrate the feasibility and validity.

Keywords: Rayleigh damping, modal damping, damping coefficients, seismic response analysis.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2908
1587 Investigation of Overstrength of Dual System by Non-Linear Static and Dynamic Analyses

Authors: Nina Øystad-Larsen, Miran Cemalovic, Amir M. Kaynia

Abstract:

The nonlinear static and dynamic analysis procedures presented in EN 1998-1 for the structural response of a RC wall-frame building are assessed. The structure is designed according to the guidelines for high ductility (DCH) in 1998-1. The finite element packages SeismoStruct and OpenSees are utilized and evaluated. The structural response remains nearly in the elastic range even though the building was designed for high ductility. The overstrength is a result of oversized and heavily reinforced members, with emphasis on the lower storey walls. Nonlinear response history analysis in the software packages give virtually identical results for displacements.

Keywords: Behaviour factor, Dual system, OpenSEES, Overstrength, SeismoStruct.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2056
1586 Thermal Analysis of the Current Path from Circuit Breakers Using Finite Element Method

Authors: Adrian T. Plesca

Abstract:

This paper describes a three-dimensional thermal model of the current path included in the low voltage power circuit breakers. The model can be used to analyse the thermal behaviour of the current path during both steady-state and transient conditions. The current path lengthwise temperature distribution and timecurrent characteristic of the terminal connections of the power circuit breaker have been obtained. The influence of the electric current and voltage drop on main electric contact of the circuit breaker has been investigated. To validate the three-dimensional thermal model, some experimental tests have been done. There is a good correlation between experimental and simulation results.

Keywords: Current path, power circuit breakers, temperature distribution, thermal analysis.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2689
1585 A Research of the Influence that MP3 Sound Gives EEG of the Person

Authors: Seiya Teshima, Kazushige Magatani

Abstract:

Currently, many types of no-reversible compressed sound source, represented by MP3 (MPEG Audio Layer-3) are popular in the world and they are widely used to make the music file size smaller. The sound data created in this way has less information as compared to pre-compressed data. The objective of this study is by analyzing EEG to determine if people can recognize such difference as differences in sound. A measurement system that can measure and analyze EEG when a subject listens to music were experimentally developed. And ten subjects were studied with this system. In this experiment, a WAVE formatted music data and a MP3 compressed music data that is made from the WAVE formatted data were prepared. Each subject was made to hear these music sources at the same volume. From the results of this experiment, clear differences were confirmed between two wound sources.

Keywords: EEG, Biological signal , Sound , MP3

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1773
1584 Some Solitary Wave Solutions of Generalized Pochhammer-Chree Equation via Exp-function Method

Authors: Kourosh Parand, Jamal Amani Rad

Abstract:

In this paper, Exp-function method is used for some exact solitary solutions of the generalized Pochhammer-Chree equation. It has been shown that the Exp-function method, with the help of symbolic computation, provides a very effective and powerful mathematical tool for solving nonlinear partial differential equations. As a result, some exact solitary solutions are obtained. It is shown that the Exp-function method is direct, effective, succinct and can be used for many other nonlinear partial differential equations.

Keywords: Exp-function method, generalized Pochhammer- Chree equation, solitary wave solution, ODE's.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1586
1583 Analysis of Vortex-Induced Vibration Characteristics for a Three-Dimensional Flexible Tube

Authors: Zhipeng Feng, Huanhuan Qi, Pingchuan Shen, Fenggang Zang, Yixiong Zhang

Abstract:

Numerical simulations of vortex-induced vibration of a three-dimensional flexible tube under uniform turbulent flow are calculated when Reynolds number is 1.35×104. In order to achieve the vortex-induced vibration, the three-dimensional unsteady, viscous, incompressible Navier-Stokes equation and LES turbulence model are solved with the finite volume approach, the tube is discretized according to the finite element theory, and its dynamic equilibrium equations are solved by the Newmark method. The fluid-tube interaction is realized by utilizing the diffusion-based smooth dynamic mesh method. Considering the vortex-induced vibration system, the variety trends of lift coefficient, drag coefficient, displacement, vertex shedding frequency, phase difference angle of tube are analyzed under different frequency ratios. The nonlinear phenomena of locked-in, phase-switch are captured successfully. Meanwhile, the limit cycle and bifurcation of lift coefficient and displacement are analyzed by using trajectory, phase portrait, and Poincaré sections. The results reveal that: when drag coefficient reaches its minimum value, the transverse amplitude reaches its maximum, and the “lock-in” begins simultaneously. In the range of lock-in, amplitude decreases gradually with increasing of frequency ratio. When lift coefficient reaches its minimum value, the phase difference undergoes a suddenly change from the “out-of-phase” to the “in-phase” mode.

Keywords: Vortex induced vibration, limit cycle, CFD, FEM.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1460
1582 Rigorous Modeling of Fixed-Bed Reactors Containing Finite Hollow Cylindrical Catalyst with Michaelis-Menten Type of Kinetics

Authors: Mohammad Asif

Abstract:

A large number of chemical, bio-chemical and pollution-control processes use heterogeneous fixed-bed reactors. The use of finite hollow cylindrical catalyst pellets can enhance conversion levels in such reactors. The absence of the pellet core can significantly lower the diffusional resistance associated with the solid phase. This leads to a better utilization of the catalytic material, which is reflected in the higher values for the effectiveness factor, leading ultimately to an enhanced conversion level in the reactor. It is however important to develop a rigorous heterogeneous model for the reactor incorporating the two-dimensional feature of the solid phase owing to the presence of the finite hollow cylindrical catalyst pellet. Presently, heterogeneous models reported in the literature invariably employ one-dimension solid phase models meant for spherical catalyst pellets. The objective of the paper is to present a rigorous model of the fixed-bed reactors containing finite hollow cylindrical catalyst pellets. The reaction kinetics considered here is the widely used Michaelis–Menten kinetics for the liquid-phase bio-chemical reactions. The reaction parameters used here are for the enzymatic degradation of urea. Results indicate that increasing the height to diameter ratio helps to improve the conversion level. On the other hand, decreasing the thickness is apparently not as effective. This could however be explained in terms of the higher void fraction of the bed that causes a smaller amount of the solid phase to be packed in the fixed-bed bio-chemical reactor.

Keywords: Fixed-bed reactor, Finite hollow cylinder, Catalyst pellet, Conversion, Michaelis-Menten kinetics.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1591
1581 Application of Multi-objective Optimization Packages in Design of an Evaporator Coil

Authors: A.Mosavi

Abstract:

A novel methodology has been used to design an evaporator coil of a refrigerant. The methodology used is through a complete Computer Aided Design /Computer Aided Engineering approach, by means of a Computational Fluid Dynamic/Finite Element Analysis model which is executed many times for the thermal-fluid exploration of several designs' configuration by an commercial optimizer. Hence the design is carried out automatically by parallel computations, with an optimization package taking the decisions rather than the design engineer. The engineer instead takes decision regarding the physical settings and initializing of the computational models to employ, the number and the extension of the geometrical parameters of the coil fins and the optimization tools to be employed. The final design of the coil geometry found to be better than the initial design.

Keywords: Multi-objective shape optimization, Heat Transfer, multi-physics structures, modeFRONTIER

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2047
1580 Thrust Enhancement on a Two Dimensional Elliptic Airfoil in a Forward Flight

Authors: S. M. Dash, K. B. Lua, T. T. Lim

Abstract:

This paper presents results of numerical and experimental studies on a two-dimensional (2D) flapping elliptic airfoil in a forward flight condition at Reynolds number of 5000. The study is motivated from an earlier investigation which shows that the deterioration in thrust performance of a sinusoidal heaving and pitching 2D (NACA0012) airfoil at high flapping frequency can be recovered by changing the effective angle of attack profile to square wave, sawtooth, or cosine wave shape. To better understand why such modifications lead to superior thrust performance, we take a closer look at the transient aerodynamic force behavior of an airfoil when the effective angle of attack profile changes gradually from a generic smooth trapezoidal profile to a sinusoid shape by modifying the base length of the trapezoid. The choice of using a smooth trapezoidal profile is to avoid the infinite acceleration condition encountered in the square wave profile. Our results show that the enhancement in the time-averaged thrust performance at high flapping frequency can be attributed to the delay and reduction in the drag producing valley region in the transient thrust force coefficient when the effective angle of attack profile changes from sinusoidal to trapezoidal.  

Keywords: Two-dimensional Flapping Airfoil, Thrust Performance, Effective Angle of Attack, CFD and Experiments.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1812
1579 The Collapse of a Crane on Site: A Case Study

Authors: T. Teruzzi, S. Antonietti, C. Mosca, C. Paglia

Abstract:

This paper discusses the causes of the structural failure in a tower crane. The structural collapse occurred at the upper joints of the extension element used to increase the height of the crane. The extension element consists of a steel lattice structure made with angular profiles and plates joined to the tower element by arc welding. Macroscopic inspection of the sections showed that the break was always observed on the angular profiles at the weld bead edge. The case study shows how, using mechanical characterization, chemical analysis of the steel and macroscopic and microscopic metallographic examinations, it was possible to obtain significant evidence that identified the mechanism causing the breakage. The analyses identified the causes of the structural failure as the use of materials that were not suitable for welding and poor performance in the welding joints.

Keywords: Failure, weld, microstructure, microcracks.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 499
1578 Analysis of Flexural Behavior of Wood-Concrete Beams

Authors: M. Li, V. D. Thi, M. Khelifa, M. El Ganaoui

Abstract:

This study presents an overview of the work carried out by the use of wood waste as coarse aggregate in mortar. The paper describes experimental and numerical investigations carried on pervious concrete made of wood chips and also sheds lights on the mechanical properties of this new product. The properties of pervious wood-concrete such as strength, elastic modulus, and failure modes are compared and evaluated. The characterization procedure of the mechanical properties of wood waste ash are presented and discussed. The numerical and tested load–deflection response results are compared. It was observed that the numerical results are in good agreement with the experimental results.

Keywords: Wood waste ash, characterization, mechanical properties, finite element analysis, flexural behavior, bending tests.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1366
1577 Orthosis and Finite Elements: A Study for Development of New Designs through Additive Manufacturing

Authors: M. Volpini, D. Alves, A. Horta, M. Borges, P. Reis

Abstract:

The gait pattern in people that present motor limitations foment the demand for auxiliary locomotion devices. These artifacts for movement assistance vary according to its shape, size and functional features, following the clinical applications desired. Among the ortheses of lower limbs, the ankle-foot orthesis aims to improve the ability to walk in people with different neuromuscular limitations, although they do not always answer patients' expectations for their aesthetic and functional characteristics. The purpose of this study is to explore the possibility of using new design in additive manufacturer to reproduce the shape and functional features of a ankle-foot orthesis in an efficient and modern way. Therefore, this work presents a study about the performance of the mechanical forces through the analysis of finite elements in an ankle-foot orthesis. It will be demonstrated a study of distribution of the stress on the orthopedic device in orthostatism and during the movement in the course of patient's walk.

Keywords: Additive manufacture, new designs, orthoses, finite elements.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1129
1576 The Investigation of Crack's Parameters on the V-Notch using Photoelasticity Method

Authors: M. Saravani, M. Azizi,

Abstract:

The V-notches are most possible case for initiation of cracks in parts. The specifications of cracks on the tip of the notch will be influenced via opening angle, tip radius and depth of V-notch. In this study, the effects of V-notch-s opening angle on stress intensity factor and T-stress of crack on the notch has been investigated. The experiment has been done in different opening angles and various crack length in mode (I) loading using Photoelasticity method. The results illustrate that while angle increases in constant crack-s length, SIF and T-stress will decrease. Beside, the effect of V-notch angle in short crack is more than long crack. These V-notch affects are negligible by increasing the length of crack, and the crack-s behavior can be considered as a single-edge crack specimen. Finally, the results have been evaluated with numerical finite element analysis and good agreement was obvious.

Keywords: Photoelasticity, Stress intensity factor, T-stress, V-notch.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1799
1575 Developing a Simple and an Accurate Formula for the Conduction Angle of a Single Phase Rectifier with RL Load

Authors: S. Ali Al-Mawsawi, Fadhel A. Albasri

Abstract:

The paper presents a simple and an accurate formula that has been developed for the conduction angle (δ) of a single phase half-wave or full-wave controlled rectifier with RL load. This formula can be also used for calculating the conduction angle (δ) in case of A.C. voltage regulator with inductive load under discontinuous current mode. The simulation results shows that the conduction angle calculated from the developed formula agree very well with that obtained from the exact solution arrived from the iterative method. Applying the developed formula can reduce the computational time and reduce the time for manual classroom calculation. In addition, the proposed formula is attractive for real time implementations.

Keywords: Conduction Angle, Firing Angle, Excitation Angle, Load Angle.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 5126
1574 Construction and Validation of a Hybrid Lumbar Spine Model for the Fast Evaluation of Intradiscal Pressure and Mobility

Authors: Ali Hamadi Dicko, Nicolas Tong-Yette, Benjamin Gilles, François Faure, Olivier Palombi

Abstract:

A novel hybrid model of the lumbar spine, allowing fast static and dynamic simulations of the disc pressure and the spine mobility, is introduced in this work. Our contribution is to combine rigid bodies, deformable finite elements, articular constraints, and springs into a unique model of the spine. Each vertebra is represented by a rigid body controlling a surface mesh to model contacts on the facet joints and the spinous process. The discs are modeled using a heterogeneous tetrahedral finite element model. The facet joints are represented as elastic joints with six degrees of freedom, while the ligaments are modeled using non-linear one-dimensional elastic elements. The challenge we tackle is to make these different models efficiently interact while respecting the principles of Anatomy and Mechanics. The mobility, the intradiscal pressure, the facet joint force and the instantaneous center of rotation of the lumbar spine are validated against the experimental and theoretical results of the literature on flexion, extension, lateral bending as well as axial rotation. Our hybrid model greatly simplifies the modeling task and dramatically accelerates the simulation of pressure within the discs, as well as the evaluation of the range of motion and the instantaneous centers of rotation, without penalizing precision. These results suggest that for some types of biomechanical simulations, simplified models allow far easier modeling and faster simulations compared to usual full-FEM approaches without any loss of accuracy.

Keywords: Hybrid, modeling, fast simulation, lumbar spine.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2374
1573 CFD Simulation of SO2 Removal from Gas Mixtures using Ceramic Membranes

Authors: Azam Marjani, Saeed Shirazian

Abstract:

This work deals with modeling and simulation of SO2 removal in a ceramic membrane by means of FEM. A mass transfer model was developed to predict the performance of SO2 absorption in a chemical solvent. The model was based on solving conservation equations for gas component in the membrane. Computational fluid dynamics (CFD) of mass and momentum were used to solve the model equations. The simulations aimed to obtain the distribution of gas concentration in the absorption process. The effect of the operating parameters on the efficiency of the ceramic membrane was evaluated. The modeling findings showed that the gas phase velocity has significant effect on the removal of gas whereas the liquid phase does not affect the SO2 removal significantly. It is also indicated that the main mass transfer resistance is placed in the membrane and gas phase because of high tortuosity of the ceramic membrane.

Keywords: Gas separation, finite element, ceramic, sulphur dioxide, simulation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2269
1572 PeliGRIFF: A Parallel DEM-DLM/FD Method for DNS of Particulate Flows with Collisions

Authors: Anthony Wachs, Guillaume Vinay, Gilles Ferrer, Jacques Kouakou, Calin Dan, Laurence Girolami

Abstract:

An original Direct Numerical Simulation (DNS) method to tackle the problem of particulate flows at moderate to high concentration and finite Reynolds number is presented. Our method is built on the framework established by Glowinski and his coworkers [1] in the sense that we use their Distributed Lagrange Multiplier/Fictitious Domain (DLM/FD) formulation and their operator-splitting idea but differs in the treatment of particle collisions. The novelty of our contribution relies on replacing the simple artificial repulsive force based collision model usually employed in the literature by an efficient Discrete Element Method (DEM) granular solver. The use of our DEM solver enables us to consider particles of arbitrary shape (at least convex) and to account for actual contacts, in the sense that particles actually touch each other, in contrast with the simple repulsive force based collision model. We recently upgraded our serial code, GRIFF 1 [2], to full MPI capabilities. Our new code, PeliGRIFF 2, is developed under the framework of the full MPI open source platform PELICANS [3]. The new MPI capabilities of PeliGRIFF open new perspectives in the study of particulate flows and significantly increase the number of particles that can be considered in a full DNS approach: O(100000) in 2D and O(10000) in 3D. Results on the 2D/3D sedimentation/fluidization of isometric polygonal/polyedral particles with collisions are presented.

Keywords: Particulate flow, distributed lagrange multiplier/fictitious domain method, discrete element method, polygonal shape, sedimentation, distributed computing, MPI

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2120
1571 Causes of Rotor Distortions and Applicable Common Straightening Methods for Turbine Rotors and Shafts

Authors: Esmaeil Poursaeidi, Mostafa Kamalzadeh Yazdi

Abstract:

Different problems may causes distortion of the rotor, and hence vibration, which is the most severe damage of the turbine rotors. In many years different techniques have been developed for the straightening of bent rotors. The method for straightening can be selected according to initial information from preliminary inspections and tests such as nondestructive tests, chemical analysis, run out tests and also a knowledge of the shaft material. This article covers the various causes of excessive bends and then some applicable common straightening methods are reviewed. Finally, hot spotting is opted for a particular bent rotor. A 325 MW steam turbine rotor is modeled and finite element analyses are arranged to investigate this straightening process. Results of experimental data show that performing the exact hot spot straightening process reduced the bending of the rotor significantly.

Keywords: Distortion, FEM, Hot Spot Area, Rotor Straightening

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 6506