Search results for: ODE's.
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 29

Search results for: ODE's.

29 Real-Time Physics Simulation Packages: An Evaluation Study

Authors: J.Zouhair, D.Ellison

Abstract:

This paper includes a review of three physics simulation packages that can be used to provide researchers with a virtual ground for modeling, implementing and simulating complex models, as well as testing their control methods with less cost and time of development. The inverted pendulum model was used as a test bed for comparing ODE, DANCE and Webots, while Linear State Feedback was used to control its behavior. The packages were compared with respect to model creation, solving systems of differential equation, data storage, setting system variables, control the experiment and ease of use. The purpose of this paper is to give an overview about our experience with these environments and to demonstrate some of the benefits and drawbacks involved in practice for each package.

Keywords: DANCE, Inverted Pendulum, ODE, Simulation Packages, Webots.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1585
28 On Symmetry Analysis and Exact Wave Solutions of New Modified Novikov Equation

Authors: Anupma Bansal, R. K. Gupta

Abstract:

In this paper, we study a new modified Novikov equation for its classical and nonclassical symmetries and use the symmetries to reduce it to a nonlinear ordinary differential equation (ODE). With the aid of solutions of the nonlinear ODE by using the modified (G/G)-expansion method proposed recently, multiple exact traveling wave solutions are obtained and the traveling wave solutions are expressed by the hyperbolic functions, trigonometric functions and rational functions.

Keywords: New Modified Novikov Equation, Lie Classical Method, Nonclassical Method, Modified (G'/G)-Expansion Method, Traveling Wave Solutions.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1652
27 The Impact of Cooperative Learning on Numerical Methods Course

Authors: Sara Bilal, Abdi Omar Shuriye, Raihan Othman

Abstract:

Numerical Methods is a course that can be conducted using workshops and group discussion. This study has been implemented on undergraduate students of level two at the Faculty of Engineering, International Islamic University Malaysia. The Numerical Method course has been delivered to two Sections 1 and 2 with 44 and 22 students in each section, respectively. Systematic steps have been followed to apply the student centered learning approach in teaching Numerical Method course. Initially, the instructor has chosen the topic which was Euler’s Method to solve Ordinary Differential Equations (ODE) to be learned. The students were then divided into groups with five members in each group. Initial instructions have been given to the group members to prepare their subtopics before meeting members from other groups to discuss the subtopics in an expert group inside the classroom. For the time assigned for the classroom discussion, the setting of the classroom was rearranged to accommodate the student centered learning approach. Teacher strength was by monitoring the process of learning inside and outside the class. The students have been assessed during the migrating to the expert groups, recording of a video explanation outside the classroom and during the final examination. Euler’s Method to solve the ODE was set as part of Question 3(b) in the final exam. It is observed that none of the students from both sections obtained a zero grade in Q3(b), compared to Q3(a) and Q3(c). Also, for Section 1(44 students), 29 students obtained the full mark of 7/7, while only 10 obtained 7/7 for Q3(a) and no students obtained 6/6 for Q3(c). Finally, we can recommend that the Numerical Method course be moved toward more student-centered Learning classrooms where the students will be engaged in group discussion rather than having a teacher one man show.

Keywords: Teacher centered learning, student centered learning, mathematic, numerical methods.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1506
26 Blow up in Polynomial Differential Equations

Authors: Rudolf Csikja, Janos Toth

Abstract:

Methods to detect and localize time singularities of polynomial and quasi-polynomial ordinary differential equations are systematically presented and developed. They are applied to examples taken form different fields of applications and they are also compared to better known methods such as those based on the existence of linear first integrals or Lyapunov functions.

Keywords: blow up, finite escape time, polynomial ODE, singularity, Lotka–Volterra equation, Painleve analysis, Ψ-series, global existence

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2212
25 An Efficient Computational Algorithm for Solving the Nonlinear Lane-Emden Type Equations

Authors: Gholamreza Hojjati, Kourosh Parand

Abstract:

In this paper we propose a class of second derivative multistep methods for solving some well-known classes of Lane- Emden type equations which are nonlinear ordinary differential equations on the semi-infinite domain. These methods, which have good stability and accuracy properties, are useful in deal with stiff ODEs. We show superiority of these methods by applying them on the some famous Lane-Emden type equations.

Keywords: Lane-Emden type equations, nonlinear ODE, stiff problems, multistep methods, astrophysics.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3222
24 Group Invariant Solutions of Nonlinear Time-Fractional Hyperbolic Partial Differential Equation

Authors: Anupma Bansal, Rajeev Budhiraja, Manoj Pandey

Abstract:

In this paper, we have investigated the nonlinear time-fractional hyperbolic partial differential equation (PDE) for its symmetries and invariance properties. With the application of this method, we have tried to reduce it to time-fractional ordinary differential equation (ODE) which has been further studied for exact solutions.

Keywords: Nonlinear time-fractional hyperbolic PDE, Lie Classical method, exact solutions.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1415
23 Lagrangian Method for Solving Unsteady Gas Equation

Authors: Amir Taghavi, kourosh Parand, Hosein Fani

Abstract:

In this paper we propose, a Lagrangian method to solve unsteady gas equation which is a nonlinear ordinary differential equation on semi-infnite interval. This approach is based on Modified generalized Laguerre functions. This method reduces the solution of this problem to the solution of a system of algebraic equations. We also compare this work with some other numerical results. The findings show that the present solution is highly accurate.

Keywords: Unsteady gas equation, Generalized Laguerre functions, Lagrangian method, Nonlinear ODE.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1561
22 Analytical solution of Gas Flow Through a Micro-Nano Porous Media by Homotopy Perturbation method

Authors: Jamal Amani Rad, Kourosh Parand

Abstract:

In this paper, we have applied the homotopy perturbation method (HPM) for obtaining the analytical solution of unsteady flow of gas through a porous medium and we have also compared the findings of this research with some other analytical results. Results showed a very good agreement between results of HPM and the numerical solutions of the problem rather than other analytical solutions which have previously been applied. The results of homotopy perturbation method are of high accuracy and the method is very effective and succinct.

Keywords: Unsteady gas equation, Homotopy perturbation method(HPM), Porous medium, Nonlinear ODE

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1914
21 A Spectral Decomposition Method for Ordinary Differential Equation Systems with Constant or Linear Right Hand Sides

Authors: R. B. Ogunrinde, C. C. Jibunoh

Abstract:

In this paper, a spectral decomposition method is developed for the direct integration of stiff and nonstiff homogeneous linear (ODE) systems with linear, constant, or zero right hand sides (RHSs). The method does not require iteration but obtains solutions at any random points of t, by direct evaluation, in the interval of integration. All the numerical solutions obtained for the class of systems coincide with the exact theoretical solutions. In particular, solutions of homogeneous linear systems, i.e. with zero RHS, conform to the exact analytical solutions of the systems in terms of t.

Keywords: Spectral decomposition, eigenvalues of the Jacobian, linear RHS, homogeneous linear systems.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1182
20 Unsteady Reversed Stagnation-Point Flow over a Flat Plate

Authors: Vai Kuong Sin, Chon Kit Chio

Abstract:

This paper investigates the nature of the development of two-dimensional laminar flow of an incompressible fluid at the reversed stagnation-point. ". In this study, we revisit the problem of reversed stagnation-point flow over a flat plate. Proudman and Johnson (1962) first studied the flow and obtained an asymptotic solution by neglecting the viscous terms. This is no true in neglecting the viscous terms within the total flow field. In particular it is pointed out that for a plate impulsively accelerated from rest to a constant velocity V0 that a similarity solution to the self-similar ODE is obtained which is noteworthy completely analytical.

Keywords: reversed stagnation-point flow, similarity solutions, analytical solution, numerical solution

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1482
19 On the Modeling and State Estimation for Dynamic Power System

Authors: A. Thabet, M. Boutayeb, M. N. Abdelkrim

Abstract:

This paper investigates a method for the state estimation of nonlinear systems described by a class of differential-algebraic equation (DAE) models using the extended Kalman filter. The method involves the use of a transformation from a DAE to ordinary differential equation (ODE). A relevant dynamic power system model using decoupled techniques will be proposed. The estimation technique consists of a state estimator based on the EKF technique as well as the local stability analysis. High performances are illustrated through a simulation study applied on IEEE 13 buses test system.

Keywords: Power system, Dynamic decoupled model, Extended Kalman Filter, Convergence analysis, Time computing.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2761
18 On Symmetries and Exact Solutions of Einstein Vacuum Equations for Axially Symmetric Gravitational Fields

Authors: Nisha Goyal, R.K. Gupta

Abstract:

Einstein vacuum equations, that is a system of nonlinear partial differential equations (PDEs) are derived from Weyl metric by using relation between Einstein tensor and metric tensor. The symmetries of Einstein vacuum equations for static axisymmetric gravitational fields are obtained using the Lie classical method. We have examined the optimal system of vector fields which is further used to reduce nonlinear PDE to nonlinear ordinary differential equation (ODE). Some exact solutions of Einstein vacuum equations in general relativity are also obtained.

Keywords: Gravitational fields, Lie Classical method, Exact solutions.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1962
17 Numerical Treatment of Block Method for the Solution of Ordinary Differential Equations

Authors: A. M. Sagir

Abstract:

Discrete linear multistep block method of uniform order for the solution of first order initial value problems (IVP­s­) in ordinary differential equations (ODE­s­) is presented in this paper. The approach of interpolation and collocation approximation are adopted in the derivation of the method which is then applied to first order ordinary differential equations with associated initial conditions. The continuous hybrid formulations enable us to differentiate and evaluate at some grids and off – grid points to obtain four discrete schemes, which were used in block form for parallel or sequential solutions of the problems. Furthermore, a stability analysis and efficiency of the block method are tested on ordinary differential equations, and the results obtained compared favorably with the exact solution.

Keywords: Block Method, First Order Ordinary Differential Equations, Hybrid, Self starting.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2833
16 Some Solitary Wave Solutions of Generalized Pochhammer-Chree Equation via Exp-function Method

Authors: Kourosh Parand, Jamal Amani Rad

Abstract:

In this paper, Exp-function method is used for some exact solitary solutions of the generalized Pochhammer-Chree equation. It has been shown that the Exp-function method, with the help of symbolic computation, provides a very effective and powerful mathematical tool for solving nonlinear partial differential equations. As a result, some exact solitary solutions are obtained. It is shown that the Exp-function method is direct, effective, succinct and can be used for many other nonlinear partial differential equations.

Keywords: Exp-function method, generalized Pochhammer- Chree equation, solitary wave solution, ODE's.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1622
15 A Nonlinear ODE System for the Unsteady Hydrodynamic Force – A New Approach

Authors: Osama A. Marzouk

Abstract:

We propose a reduced-ordermodel for the instantaneous hydrodynamic force on a cylinder. The model consists of a system of two ordinary differential equations (ODEs), which can be integrated in time to yield very accurate histories of the resultant force and its direction. In contrast to several existing models, the proposed model considers the actual (total) hydrodynamic force rather than its perpendicular or parallel projection (the lift and drag), and captures the complete force rather than the oscillatory part only. We study and provide descriptions of the relationship between the model parameters, evaluated utilizing results from numerical simulations, and the Reynolds number so that the model can be used at any arbitrary value within the considered range of 100 to 500 to provide accurate representation of the force without the need to perform timeconsuming simulations and solving the partial differential equations (PDEs) governing the flow field.

Keywords: reduced-order model, wake oscillator, nonlinear, ODEsystem

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1608
14 Quasilinearization–Barycentric Approach for Numerical Investigation of the Boundary Value Fin Problem

Authors: Alireza Rezaei, Fatemeh Baharifard, Kourosh Parand

Abstract:

In this paper we improve the quasilinearization method by barycentric Lagrange interpolation because of its numerical stability and computation speed to achieve a stable semi analytical solution. Then we applied the improved method for solving the Fin problem which is a nonlinear equation that occurs in the heat transferring. In the quasilinearization approach the nonlinear differential equation is treated by approximating the nonlinear terms by a sequence of linear expressions. The modified QLM is iterative but not perturbative and gives stable semi analytical solutions to nonlinear problems without depending on the existence of a smallness parameter. Comparison with some numerical solutions shows that the present solution is applicable.

Keywords: Quasilinearization method, Barycentric lagrange interpolation, nonlinear ODE, fin problem, heat transfer.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1902
13 On a Way for Constructing Numerical Methods on the Joint of Multistep and Hybrid Methods

Authors: G.Mehdiyeva, M.Imanova, V.Ibrahimov

Abstract:

Taking into account that many problems of natural sciences and engineering are reduced to solving initial-value problem for ordinary differential equations, beginning from Newton, the scientists investigate approximate solution of ordinary differential equations. There are papers of different authors devoted to the solution of initial value problem for ODE. The Euler-s known method that was developed under the guidance of the famous scientists Adams, Runge and Kutta is the most popular one among these methods. Recently the scientists began to construct the methods preserving some properties of Adams and Runge-Kutta methods and called them hybrid methods. The constructions of such methods are investigated from the middle of the XX century. Here we investigate one generalization of multistep and hybrid methods and on their base we construct specific methods of accuracy order p = 5 and p = 6 for k = 1 ( k is the order of the difference method).

Keywords: Multistep and hybrid methods, initial value problem, degree and stability of hybrid methods

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1630
12 Evolutionary Computation Technique for Solving Riccati Differential Equation of Arbitrary Order

Authors: Raja Muhammad Asif Zahoor, Junaid Ali Khan, I. M. Qureshi

Abstract:

In this article an evolutionary technique has been used for the solution of nonlinear Riccati differential equations of fractional order. In this method, genetic algorithm is used as a tool for the competent global search method hybridized with active-set algorithm for efficient local search. The proposed method has been successfully applied to solve the different forms of Riccati differential equations. The strength of proposed method has in its equal applicability for the integer order case, as well as, fractional order case. Comparison of the method has been made with standard numerical techniques as well as the analytic solutions. It is found that the designed method can provide the solution to the equation with better accuracy than its counterpart deterministic approaches. Another advantage of the given approach is to provide results on entire finite continuous domain unlike other numerical methods which provide solutions only on discrete grid of points.

Keywords: Riccati Equation, Non linear ODE, Fractional differential equation, Genetic algorithm.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1977
11 Solution of Density Dependent Nonlinear Reaction-Diffusion Equation Using Differential Quadrature Method

Authors: Gülnihal Meral

Abstract:

In this study, the density dependent nonlinear reactiondiffusion equation, which arises in the insect dispersal models, is solved using the combined application of differential quadrature method(DQM) and implicit Euler method. The polynomial based DQM is used to discretize the spatial derivatives of the problem. The resulting time-dependent nonlinear system of ordinary differential equations(ODE-s) is solved by using implicit Euler method. The computations are carried out for a Cauchy problem defined by a onedimensional density dependent nonlinear reaction-diffusion equation which has an exact solution. The DQM solution is found to be in a very good agreement with the exact solution in terms of maximum absolute error. The DQM solution exhibits superior accuracy at large time levels tending to steady-state. Furthermore, using an implicit method in the solution procedure leads to stable solutions and larger time steps could be used.

Keywords: Density Dependent Nonlinear Reaction-Diffusion Equation, Differential Quadrature Method, Implicit Euler Method.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2312
10 Fall Avoidance Control of Wheeled Inverted Pendulum Type Robotic Wheelchair While Climbing Stairs

Authors: Nan Ding, Motoki Shino, Nobuyasu Tomokuni, Genki Murata

Abstract:

The wheelchair is the major means of transport for physically disabled people. However, it cannot overcome architectural barriers such as curbs and stairs. In this paper, the authors proposed a method to avoid falling down of a wheeled inverted pendulum type robotic wheelchair for climbing stairs. The problem of this system is that the feedback gain of the wheels cannot be set high due to modeling errors and gear backlash, which results in the movement of wheels. Therefore, the wheels slide down the stairs or collide with the side of the stairs, and finally the wheelchair falls down. To avoid falling down, the authors proposed a slider control strategy based on skyhook model in order to decrease the movement of wheels, and a rotary link control strategy based on the staircase dimensions in order to avoid collision or slide down. The effectiveness of the proposed fall avoidance control strategy was validated by ODE simulations and the prototype wheelchair.

Keywords: EPW, fall avoidance control, skyhook, wheeled inverted pendulum.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1225
9 MHD Non-Newtonian Nanofluid Flow over a Permeable Stretching Sheet with Heat Generation and Velocity Slip

Authors: Rama Bhargava, Mania Goyal

Abstract:

The problem of magnetohydrodynamics boundary layer flow and heat transfer on a permeable stretching surface in a second grade nanofluid under the effect of heat generation and partial slip is studied theoretically. The Brownian motion and thermophoresis effects are also considered. The boundary layer equations governed by the PDE’s are transformed into a set of ODE’s with the help of local similarity transformations. The differential equations are solved by variational finite element method. The effects of different controlling parameters on the flow field and heat transfer characteristics are examined. The numerical results for the dimensionless velocity, temperature and nanoparticle volume fraction as well as the reduced Nusselt and Sherwood number have been presented graphically. The comparison confirmed excellent agreement. The present study is of great interest in coating and suspensions, cooling of metallic plate, oils and grease, paper production, coal water or coal-oil slurries, heat exchangers technology, materials processing exploiting.

Keywords: Viscoelastic nanofluid, partial slip, stretching sheet, heat generation/absorption, MHD flow, FEM.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3306
8 Rational Chebyshev Tau Method for Solving Natural Convection of Darcian Fluid About a Vertical Full Cone Embedded in Porous Media Whit a Prescribed Wall Temperature

Authors: Kourosh Parand, Zahra Delafkar, Fatemeh Baharifard

Abstract:

The problem of natural convection about a cone embedded in a porous medium at local Rayleigh numbers based on the boundary layer approximation and the Darcy-s law have been studied before. Similarity solutions for a full cone with the prescribed wall temperature or surface heat flux boundary conditions which is the power function of distance from the vertex of the inverted cone give us a third-order nonlinear differential equation. In this paper, an approximate method for solving higher-order ordinary differential equations is proposed. The approach is based on a rational Chebyshev Tau (RCT) method. The operational matrices of the derivative and product of rational Chebyshev (RC) functions are presented. These matrices together with the Tau method are utilized to reduce the solution of the higher-order ordinary differential equations to the solution of a system of algebraic equations. We also present the comparison of this work with others and show that the present method is applicable.

Keywords: Tau method, semi-infinite, nonlinear ODE, rational Chebyshev, porous media.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1969
7 Bond Graph Modeling of Inter-Actuator Interactions in a Multi-Cylinder Hydraulic System

Authors: Mutuku Muvengei, John Kihiu

Abstract:

In this paper, a bond graph dynamic model for a valvecontrolled hydraulic cylinder has been developed. A simplified bond graph model of the inter-actuator interactions in a multi-cylinder hydraulic system has also been presented. The overall bond graph model of a valve-controlled hydraulic cylinder was developed by combining the bond graph sub-models of the pump, spool valve and the actuator using junction structures. Causality was then assigned in order to obtain a computational model which could be simulated. The causal bond graph model of the hydraulic cylinder was verified by comparing the open loop state responses to those of an ODE model which had been developed in literature based on the same assumptions. The results were found to correlate very well both in the shape of the curves, magnitude and the response times, thus indicating that the developed model represents the hydraulic dynamics of a valve-controlled cylinder. A simplified model for interactuator interaction was presented by connecting an effort source with constant pump pressure to the zero-junction from which the cylinders in a multi-cylinder system are supplied with a constant pressure from the pump. On simulating the state responses of the developed model under different situations of cylinder operations, indicated that such a simple model can be used to predict the inter-actuator interactions.

Keywords: Bond graphs, Inter-actuator interactions, Valvecontrolledhydraulic cylinder.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3065
6 A Recommendation to Oncologists for Cancer Treatment by Immunotherapy: Quantitative and Qualitative Analysis

Authors: Mandana Kariminejad, Ali Ghaffari

Abstract:

Today, the treatment of cancer, in a relatively short period, with minimum adverse effects is a great concern for oncologists. In this paper, based on a recently used mathematical model for cancer, a guideline has been proposed for the amount and duration of drug doses for cancer treatment by immunotherapy. Dynamically speaking, the mathematical ordinary differential equation (ODE) model of cancer has different equilibrium points; one of them is unstable, which is called the no tumor equilibrium point. In this paper, based on the number of tumor cells an intelligent soft computing controller (a combination of fuzzy logic controller and genetic algorithm), decides regarding the amount and duration of drug doses, to eliminate the tumor cells and stabilize the unstable point in a relatively short time. Two different immunotherapy approaches; active and adoptive, have been studied and presented. It is shown that the rate of decay of tumor cells is faster and the doses of drug are lower in comparison with the result of some other literatures. It is also shown that the period of treatment and the doses of drug in adoptive immunotherapy are significantly less than the active method. A recommendation to oncologists has also been presented.

Keywords: Tumor, immunotherapy, fuzzy controller, Genetic algorithm, mathematical model.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1128
5 Spectral Investigation for Boundary Layer Flow over a Permeable Wall in the Presence of Transverse Magnetic Field

Authors: Saeed Sarabadan, Mehran Nikarya, Kouroah Parand

Abstract:

The magnetohydrodynamic (MHD) Falkner-Skan equations appear in study of laminar boundary layers flow over a wedge in presence of a transverse magnetic field. The partial differential equations of boundary layer problems in presence of a transverse magnetic field are reduced to MHD Falkner-Skan equation by similarity solution methods. This is a nonlinear ordinary differential equation. In this paper, we solve this equation via spectral collocation method based on Bessel functions of the first kind. In this approach, we reduce the solution of the nonlinear MHD Falkner-Skan equation to a solution of a nonlinear algebraic equations system. Then, the resulting system is solved by Newton method. We discuss obtained solution by studying the behavior of boundary layer flow in terms of skin friction, velocity, various amounts of magnetic field and angle of wedge. Finally, the results are compared with other methods mentioned in literature. We can conclude that the presented method has better accuracy than others.

Keywords: MHD Falkner-Skan, nonlinear ODE, spectral collocation method, Bessel functions, skin friction, velocity.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1197
4 A New Solution for Natural Convection of Darcian Fluid about a Vertical Full Cone Embedded in Porous Media Prescribed Wall Temperature by using a Hybrid Neural Network-Particle Swarm Optimization Method

Authors: M.A.Behrang, M. Ghalambaz, E. Assareh, A.R. Noghrehabadi

Abstract:

Fluid flow and heat transfer of vertical full cone embedded in porous media is studied in this paper. Nonlinear differential equation arising from similarity solution of inverted cone (subjected to wall temperature boundary conditions) embedded in porous medium is solved using a hybrid neural network- particle swarm optimization method. To aim this purpose, a trial solution of the differential equation is defined as sum of two parts. The first part satisfies the initial/ boundary conditions and does contain an adjustable parameter and the second part which is constructed so as not to affect the initial/boundary conditions and involves adjustable parameters (the weights and biases) for a multi-layer perceptron neural network. Particle swarm optimization (PSO) is applied to find adjustable parameters of trial solution (in first and second part). The obtained solution in comparison with the numerical ones represents a remarkable accuracy.

Keywords: Porous Media, Ordinary Differential Equations (ODE), Particle Swarm Optimization (PSO), Neural Network (NN).

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1755
3 Optimization of Reaction Rate Parameters in Modeling of Heavy Paraffins Dehydrogenation

Authors: Leila Vafajoo, Farhad Khorasheh, Mehrnoosh Hamzezadeh Nakhjavani, Moslem Fattahi

Abstract:

In the present study, a procedure was developed to determine the optimum reaction rate constants in generalized Arrhenius form and optimized through the Nelder-Mead method. For this purpose, a comprehensive mathematical model of a fixed bed reactor for dehydrogenation of heavy paraffins over Pt–Sn/Al2O3 catalyst was developed. Utilizing appropriate kinetic rate expressions for the main dehydrogenation reaction as well as side reactions and catalyst deactivation, a detailed model for the radial flow reactor was obtained. The reactor model composed of a set of partial differential equations (PDE), ordinary differential equations (ODE) as well as algebraic equations all of which were solved numerically to determine variations in components- concentrations in term of mole percents as a function of time and reactor radius. It was demonstrated that most significant variations observed at the entrance of the bed and the initial olefin production obtained was rather high. The aforementioned method utilized a direct-search optimization algorithm along with the numerical solution of the governing differential equations. The usefulness and validity of the method was demonstrated by comparing the predicted values of the kinetic constants using the proposed method with a series of experimental values reported in the literature for different systems.

Keywords: Dehydrogenation, Pt-Sn/Al2O3 Catalyst, Modeling, Nelder-Mead, Optimization

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2778
2 Forecasting Foreign Direct Investment with Modified Diffusion Model

Authors: Bi-Huei Tsai

Abstract:

Prior research has not effectively investigated how the profitability of Chinese branches affect FDIs in China [1, 2], so this study for the first time incorporates realistic earnings information to systematically investigate effects of innovation, imitation, and profit factors of FDI diffusions from Taiwan to China. Our nonlinear least square (NLS) model, which incorporates earnings factors, forms a nonlinear ordinary differential equation (ODE) in numerical simulation programs. The model parameters are obtained through a genetic algorithms (GA) technique and then optimized with the collected data for the best accuracy. Particularly, Taiwanese regulatory FDI restrictions are also considered in our modified model to meet the realistic conditions. To validate the model-s effectiveness, this investigation compares the prediction accuracy of modified model with the conventional diffusion model, which does not take account of the profitability factors. The results clearly demonstrate the internal influence to be positive, as early FDI adopters- consistent praises of FDI attract potential firms to make the same move. The former erects a behavior model for the latter to imitate their foreign investment decision. Particularly, the results of modified diffusion models show that the earnings from Chinese branches are positively related to the internal influence. In general, the imitating tendency of potential consumers is substantially hindered by the losses in the Chinese branches, and these firms would invest less into China. The FDI inflow extension depends on earnings of Chinese branches, and companies will adjust their FDI strategies based on the returns. Since this research has proved that earning is an influential factor on FDI dynamics, our revised model explicitly performs superior in prediction ability than conventional diffusion model.

Keywords: diffusion model, genetic algorithms, nonlinear leastsquares (NLS) model, prediction error.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1632
1 A Qualitative Description of the Dynamics in the Interactions between Three Populations: Pollinators, Plants, and Herbivores

Authors: Miriam Sosa-Díaz, Faustino Sánchez-Garduño

Abstract:

In population dynamics the study of both, the abundance and the spatial distribution of the populations in a given habitat, is a fundamental issue a From ecological point of view, the determination of the factors influencing such changes involves important problems. In this paper a mathematical model to describe the temporal dynamic and the spatiotemporal dynamic of the interaction of three populations (pollinators, plants and herbivores) is presented. The study we present is carried out by stages: 1. The temporal dynamics and 2. The spatio-temporal dynamics. In turn, each of these stages is developed by considering three cases which correspond to the dynamics of each type of interaction. For instance, for stage 1, we consider three ODE nonlinear systems describing the pollinator-plant, plant-herbivore and plant-pollinator-herbivore, interactions, respectively. In each of these systems different types of dynamical behaviors are reported. Namely, transcritical and pitchfork bifurcations, existence of a limit cycle, existence of a heteroclinic orbit, etc. For the spatiotemporal dynamics of the two mathematical models a novel factor are introduced. This consists in considering that both, the pollinators and the herbivores, move towards those places of the habitat where the plant population density is high. In mathematical terms, this means that the diffusive part of the pollinators and herbivores equations depend on the plant population density. The analysis of this part is presented by considering pairs of populations, i. e., the pollinator-plant and plant-herbivore interactions and at the end the two mathematical model is presented, these models consist of two coupled nonlinear partial differential equations of reaction-diffusion type. These are defined on a rectangular domain with the homogeneous Neumann boundary conditions. We focused in the role played by the density dependent diffusion term into the coexistence of the populations. For both, the temporal and spatio-temporal dynamics, a several of numerical simulations are included.

Keywords: Bifurcation, heteroclinic orbits, steady state, traveling wave.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1531