Orthosis and Finite Elements: A Study for Development of New Designs through Additive Manufacturing
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 33156
Orthosis and Finite Elements: A Study for Development of New Designs through Additive Manufacturing

Authors: M. Volpini, D. Alves, A. Horta, M. Borges, P. Reis

Abstract:

The gait pattern in people that present motor limitations foment the demand for auxiliary locomotion devices. These artifacts for movement assistance vary according to its shape, size and functional features, following the clinical applications desired. Among the ortheses of lower limbs, the ankle-foot orthesis aims to improve the ability to walk in people with different neuromuscular limitations, although they do not always answer patients' expectations for their aesthetic and functional characteristics. The purpose of this study is to explore the possibility of using new design in additive manufacturer to reproduce the shape and functional features of a ankle-foot orthesis in an efficient and modern way. Therefore, this work presents a study about the performance of the mechanical forces through the analysis of finite elements in an ankle-foot orthesis. It will be demonstrated a study of distribution of the stress on the orthopedic device in orthostatism and during the movement in the course of patient's walk.

Keywords: Additive manufacture, new designs, orthoses, finite elements.

Digital Object Identifier (DOI): doi.org/10.5281/zenodo.1317112

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1157

References:


[1] IBGE. Censo Demográfico 2014 – Características Gerais da População. Resultados da Amostra. IBGE,2014. available inhttp://www.ibge.gov.br/ home/estatistica/populacao/cnso2014/default_populacao.shtm.
[2] L. Deberg, A. Taheri, M. Andani, M. Hosseinipour, M. Elahinia passive ankle foot orthosis: Design, modeling, and experimental evaluation. Smart Materials Research. 2014.
[3] M. Kelly, M. C. SpiRES, J. A. Restrepo, Orthotic and prosthetic prescriptions for today andtomorrow. Physical medicine and rehabilitation clinics of North America. V. 18. 2007
[4] M. C. Faustini, R. R. Neptune, R. H. Crawford, S. J. Stanhope. Manufacture of passive dynamic ankle-foot orthoses using selective laser sintering. IEEE Trans Biomed Eng. 2008
[5] S. Milusheva, E. Tosheva, D. Tochev, Y. Toshev. Personalized ankle foot orthosis with exchangeable elastic elements. Journal of Biomechanics; V.40, 2007
[6] Healt, C. S. (2017). AFO. available in http://www.medicalexpo.es/prod/conwell medical/product68102-506020.html acess in Aug. 2017.
[7] Direct, K.-R. (2017). SmartKnit AFO Liner for Adults. available in http://www.knitritedirect.com/afo- socks.html acess in Aug. 2017.
[8] J. H. Pallari, K. W. Dalgarno, J. Woodburn: Mass customization of foot orthoses for rheumatoid arthritis using selective laser sintering. IEEE Trans Biomed Eng. 2010.
[9] S. Salles, D. E. Gyi: An evaluation of personalised insoles developed using additive manufacturing. J Sports Sci. 2013.
[10] S. Salles, D. E. Gyi: The specification of personalised insoles using additive manufacturing. Work. 2012.
[11] Y. Jin, J. Plott, R. Chen, J. Wensman, A. Shih Additive Manufacturing of Custom Orthoses and Prostheses – A Review. Procedia CIRP. V. 36, Pages 199-204, 2015.
[12] S. Schrank, L. Hitch, K. Wallace, R. Moore, S. J. Stanhope: Assessment of a virtual functional prototyping process for the rapid manufacture of passive-dynamic ankle-foot orthoses. J Biomech Eng. 2013.
[13] Horta, A.; Borges, M. A.; Volpini, M.; Reis, P. H.. Viability of Optical scanning techniques for digitization of Lower limbs. 1019080/CTBEB.2017.05.5555659, v. 5, p. 5555659, 2017.
[14] Pawale, V. N. Chougule, W. N. Tamboli, A. V. Mulay. Review: Analysis and Manufacturing of Ankle Foot Orthosis for Foot Drop. IOSR Journal of Mechanical and Civil Engineering (IOSR-JMCE). Pages. 12-15. 2012.
[15] B. Rogers, G. W. Bosker, M. F. Faustini, G. Walden, R. R. Neptune, R. H. Crawford. Variably Compliant Transtibial Prosthetic Socket Fabricated Using Solid Freeform 'a case study'. Journal of Prosthetics and Orthotics. V. 20. 2008.
[16] Raja.; V. J. Fernandes. Reverse engineering: an industrial perspective. London: Springer Verlag, V. 1, pp. 156–179, 2008.
[17] N. Volpato; C. H. Ahrens,; C. V. Ferreira,; G. Petrush; J. Carvalho, J. R. L. Santos, J. V. L. Silva. Prototipagem rápida: tecnologias e aplicações. São Paulo: Edgard Blucher, Pages 154-210. 2007.
[18] L. K; Gibson, S. P. Cheung. The use of rapid prototyping to assist medical applications. Rapid Prototyping Journal. Pages 53-58. 2006.
[19] P. F. JACOBS, Rapid prototyping & manufacturing: fundamentals of stereolithography, Society of Manufacturing Engineers, Michigan, USA, 1992.
[20] P. A. Webb: A review of rapid prototyping (RP) techniques in the medical and biomedicalsector. Journal of Medical Engineering & Technology. V. 24. 2000.
[21] N. Herbert, D. Simpson, W. D. Spence, W. Ion. A preliminary investigation into the development of 3-D printing of prosthetic sockets. Journal of Rehabilitation Research & Development. V. 42 2005.
[22] Rengier, A. Mehndiratta, L. Giesel. 3D printing based on imaging data: a review of medical applications. Int J Comput Assist Radiol Surg. 2010.
[23] N. G. Harper, E. M. Russell, J. M. Wilken, R. R. Neptune. Selective laser sintered versus carbon fiber passive-dynamic ankle-foot orthoses: a comparison of patient walking performance. Journal of biomechanical engineering; 2014.
[24] J. L. Gross. S. Y. Erkal. Lockwood. Evaluation of 3D printing and its potential impact on biotechnology and the chemical sciences. Anal Chem. Pages 3240–3253. 2014.
[25] X. Cui, T. Boland, D. D. D’Lima, M. K. Lotz. Thermal inkjet printing in tissue engineering and regenerative medicine. Recent Pat Drug Deliv Formul. Pages 149–155. 2012.
[26] J. Banks. Adding value in additive manufacturing: Researchers in the United Kingdom and Europe look to 3D printing for customization. IEEE Pulse. Pages 22–26. 2013.
[27] L. Agarwal, L. Broutman, “Three-dimensional finite element analysis of spherical particlecomposites,” Fibre Science and Technology, vol. 7, no. 1, pp. 63–77, 1974
[28] L. Segerlind, Applied finite element analysis. Wiley, 1976.
[29] W. Chen, F. Tang, C. Ju. Stress distribution of the foot during mid-stance to push-off in barefoot gait: a 3-D finite element analysis Clinical Biomechanics. V. 16. Pages 614-620 Aug. 2001.
[30] M. Jakubinek, D. Whitman, and M. White, “Negative thermal expansion materials,” Journal of Thermal Analysis and Calorimetry, vol. 99, no. 1, pp. 165–172, 2010.
[31] U. Gandhi, Data based models for automobile side impact analysis and design evaluation. Internationaljournal of impact engineering. V. 18, n 5, p.517 – 537.
[32] T. Manee, Optimal dorsal strap placement and angulation to prevent pistoning in an ankle foot orthoses.Presented at the American Orthotic and Prosthetic Association National Assembly, Las Vegas,September 2011.
[33] 3d Sytems, Material Selection Guide For Selective Laser Sintering – SLS available in https://br.3dsystems.com/sites/default/files/2017-05/3D Systems_SLS_Material%20Selection%20Guide_USEN_2016.12.20_WEB.pdf acess in Aug. 2017.