Development of 25A-Size Three-Layer Metal Gasket by Using FEM Simulation
Authors: Shigeyuki Haruyama, I Made Gatot Karohika, Akinori Sato, Didik Nurhadiyanto, Ken Kaminishi
Abstract:
Contact width and contact stress are important design parameters for optimizing corrugated metal gasket performance based on elastic and plastic contact stress. In this study, we used a three-layer metal gasket with Al, Cu, Ni as the outer layer, respectively. A finite element method was employed to develop simulation solution. The gasket model was simulated by using two simulation stages which are forming and tightening simulation. The simulation result shows that aluminum with tangent modulus, Ehal = Eal/150 has the highest slope for contact width. The slope of contact width for plastic mode gasket was higher than the elastic mode gasket.
Keywords: Contact width, contact stress, layer, metal gasket, corrugated, simulation.
Digital Object Identifier (DOI): doi.org/10.5281/zenodo.1339189
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1616References:
[1] H.A. Saeed, S. Izumi, S. Sakai, S. Haruyama, M. Nagawa, H. Noda, “Development of New Metallic Gasket and its Optimum Design for Leakage Performance,” Journal of Solid Mechanics and Material Engineering, Vol. 2, No. 1, 2008, pp. 105-114.
[2] S. Haruyama, M.A. Choiron, K. Kaminishi, “A Study of Design Standard and Performance Evaluation on New Metallic Gasket,” Proceeding of the 2nd International Symposium on Digital Manufacturing, Wuhan China, 2009, pp. 107-113.
[3] M.A. Choiron, S. Haruyama, K. Kaminishi, “Simulation and Experimentation on the Contact Width of New Metal Gasket for Asbestos Substitution,” International Journal of Aerospace and Mechanical Engineering, Vol. 5, No. 4, 2011, pp. 283-287.
[4] D. Nurhadiyanto, M.A. Choiron, S. Haruyama, K. Kaminishi, “Optimization of New 25A-size Metal Gasket Design Based on Contact Width Considering Forming and Contact Stress Effect,” International Journal of Mechanical and Aerospace Engineering, Vol. 6, 2012, pp. 343-347.
[5] S. Haruyama, D. Nurhadiyanto, M.A. Choiron, K. Kaminishi, “Surface Roughness of Flange Contact to the 25A-size Metal Gasket by using FEM Simulation,” International Journal of World Academy of Science, Engineering and Technology, Vol. 74, 2013, pp. 665-669.
[6] M.H. Serror, “Analytical study for deformability of laminated sheet metal,” Journal of Advanced Research, Vol. 4, 2013, pp. 83-92.
[7] MSC Marc 2007, User Manual.