Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 32726
Limit State of Heterogeneous Smart Structures under Unknown Cyclic Loading

Authors: M. Chen, S-Q. Zhang, X. Wang, D. Tate


This paper presents a numerical solution, namely limit and shakedown analysis, to predict the safety state of smart structures made of heterogeneous materials under unknown cyclic loadings, for instance, the flexure hinge in the micro-positioning stage driven by piezoelectric actuator. In combination of homogenization theory and finite-element method (FEM), the safety evaluation problem is converted to a large-scale nonlinear optimization programming for an acceptable bounded loading as the design reference. Furthermore, a general numerical scheme integrated with the FEM and interior-point-algorithm based optimization tool is developed, which makes the practical application possible.

Keywords: Limit state, shakedown analysis, homogenization, heterogeneous structure.

Digital Object Identifier (DOI):

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 773


[1] A. Hachemi, M.Chen, G. Chen, D. Weichert, “Limit state of structures made of heterogeneous materials,” in International Journal of Plasticity, vol. 63, 2014, pp.124-137.
[2] P. Suquet, Plasticité et homogéneisation, 1982, Université Pierre et Marie Curie: France.
[3] M. Chen, A. Hachemi, B. Markert, “Direct evaluation of limit states of heterogeneous materials under cyclic thermo-mechanical loadings,” in Proceedings in Applied Mathematics and Mechanics, vol. 14(1), 2014, pp.363-364.
[4] H. Magoariec, S. Bourgeois, O. Debordes, “Elastic plastic shakedown of 3D periodic heterogenous media: a direct numerical approach,” in International Journal of Plasticity, vol. 20, 2004, pp.1655-1675.
[5] M. Chen, A. Hachemi, “Progress in plastic design of composites,” in Direct Methods for Limit States in Structures and Materials, S. Konstantinos, D. Weichert, Springer-Verlag, 2013, pp 45-69.
[6] E. L. Wilson, R. L. Taylor, W. P. Doherty, J. Ghaboussi, “Incompatible displacement models,” in Numerical and Computer Methods in Structural Mechanics, S. J. Fenves, Academic Press, 1973, pp 43-57.
[7] A. R. Conn, N. I. M. Gould, P. L. Toint, LACELOT-A fortran package for large-scale nonlinear optimization. Berlin Heidelberg: Springer-Verlag, 1992.
[8] A. Wächter, L. T. Biegler, “On the implementation of a primal-dual interior-point filter line-search algorithm for large-scale nonlinear programming,” in Mathematical Programming, vol. 106(1), 2006, pp. 25-57.
[9] S. Mouthamid, Anwendung direkter Mehtoden zur industrielen Berechnung von Grenzlasten mechanischer Komponenten, 2008, in RWTH-Aachen: Germany.