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Abstract—An original Direct Numerical Simulation (DNS)

method to tackle the problem of particulate flows at moderate

to high concentration and finite Reynolds number is presented.

Our method is built on the framework established by Glowin-

ski and his coworkers [1] in the sense that we use their

Distributed Lagrange Multiplier/Fictitious Domain (DLM/FD)

formulation and their operator-splitting idea but differs in the

treatment of particle collisions. The novelty of our contribution

relies on replacing the simple artificial repulsive force based

collision model usually employed in the literature by an

efficient Discrete Element Method (DEM) granular solver. The

use of our DEM solver enables us to consider particles of

arbitrary shape (at least convex) and to account for actual

contacts, in the sense that particles actually touch each other, in

contrast with the simple repulsive force based collision model.

We recently upgraded our serial code, GRIFF 1 [2], to full MPI

capabilities. Our new code, PeliGRIFF 2, is developed under

the framework of the full MPI open source platform PELI-

CANS [3]. The new MPI capabilities of PeliGRIFF open new

perspectives in the study of particulate flows and significantly

increase the number of particles that can be considered in a

full DNS approach: O(100000) in 2D and O(10000) in 3D.

Results on the 2D/3D sedimentation/fluidization of isometric

polygonal/polyedral particles with collisions are presented.

Keywords—Particulate flow; Distributed Lagrange Multi-

plier/Fictitious Domain method; Discrete Element Method;

Polygonal shape; Sedimentation; Distributed computing; MPI

I. INTRODUCTION

T
HE comprehension of solid/solid and fluid/solid

interactions in moderately to highly concentrated

particulate flows is of great interest from both fundamen-

tal and practical point of views. The hydrodynamics of

such complex flows is still partially understood, even if

the fluid phase exhibits simple Newtonian properties and

the particles are monodisperse spheres (3D) or circular

�
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cylinders (2D). The primary reason for such a limited

understanding is the fact that such processes involve

phenomena at very different scales from the particle

to the flow domain. The momentum transfer from the

smallest scales like the interaction between two nearby

particles to the largest ones evidenced by the formation

of clusters of particles leads to tremendous alterations

of flow dynamics. In such flows, the consideration of

coupling between fluid flow and particles motion can

not be ignored, otherwise signifi cantly flawed modeling

of the phenomenon would be developed. The range

of industrial and scientifi c applications of particulate

flows is quite broad : rock cuttings in drilling operation

in mining and petroleum engineering, river sediment

in environmental sciences, fluidized beds in chemical

engineering, suspension flows in rheology, blood cells

in biological engineering, ...

Here we are interested in the numerical simulation of

particulate flows at moderate to high concentration and

fi nite Reynolds number
�����
	��  

. As the concentra-

tion of solid bodies suspended in the fluid exceeds more

or less 5%, the probability of collision between particles

increases dramatically. As a consequence, this requires

the use of proper contact laws and a model (or numerical

method) to handle the numerous multi-body collisions.

Besides, as
���

exceeds 1, the fluid and particle inertia

can not be ignored anymore and need to be incorpo-

rated in the governing equations. This is defi nitively

mandatory if one hopes to model properly the non-linear

mechanisms controlling the migration and rotation of

particles and lacking in Stokes flow. Our objective is

to present an original approach based on the combined

advantages of Distributed Lagrange Multiplier/Fictitious

Domain (DLM/FD) method for fluid/solid interactions

and Discrete Element Method (DEM) for multi-body

solid collisions. Our method uses the DLM/FD formula-

tion of Glowinski et al. [1] together with their operator-

splitting idea to facilitates computations but here the

collision step is handled by the DEM solver. Our DEM

solver manages particles of arbitrary shape (at least

convex) and various size. As two particles collide, the

soft-sphere approach allows them to slightly overlap and
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collision forces are calculated based on the overlapping

region. In the overlapping region, to avoid that the

conflicting rigid body motion constraints of the two

particles concerned are forced at the same velocity node,

in which case the problem would be overconstrained,

we use the same strategy as the one suggested by Singh

et al. [4] i.e. we impose the constraint of the particle

the gravity center of which is closer to that node. We

show that the computation of 2D/3D particulate flow

with polygonal/polyedral particles and actual collisions

does not bring about any trouble. The overall method

keeps the strong and robust convergence properties of

standard DLM/FD implementations.

The number of particles that can be reasonably simu-

lated in a DNS approach appears to be a crucial matter

of concern. Though DNS permits to get some deep

insight in the fluid/solid interactions since the velocity

and pressure fi elds are fully resolved around solid bodies,

the computing time is prohibitive and in most serial im-

plementations, a few hundreds (respectively thounsands)

particles in 3D (respectively in 2D) is the attainable

upper bound. Using their original DLM/FD method and

a serial implementation, Glowinski et al. [5] reported

in 2001 the simulation of the sedimentation of 6400

circular cylinders in 2D and the fluidization of 1204

spheres in 3D. Feng and Michaelides [6], in 2005, used

their code Proteus and matched the same performances

by simulating the settling of 1232 spheres thanks to

an IB-LBM (Immersed Boundary - Lattice Boltzmann

Method). In both these contributions, computations were

performed with a serial code. Nevertheless, they showed

the formation of large hydrodynamic recirculations that

involve tens to hundreds of particles. In 2005, Uhlmann

[7] implemented a similar IB method and studied the

sedimentation of 1000 spherical particles in a periodic

box with a full MPI implementation which enabled him

to consider fi ne meshes, up to
��� ��� ��� �����  � �

grid

nodes. Computations were run on 64 and 128 processors.

With other kinds of approach where the flow is averagely

solved, i.e., local averaging of physical properties on the

fluid computational cell, a larger number of particles

can be simulated. For instance, Tsuji et al. [8], [9]

showed impressive results with up to 16million particles,

but in their approach the fluid/solid interactions are not

as precisely described as in a full DNS one like the

DLM/FD or IB methods.

Being able to simulate a large number of particles is an

objective in itself from the pure computational viewpoint

but more importantly, it opens a new broad range of

classes of problem that can be investigated with this

type of approach. In other words, if in a given situa-

tion, experiments revealed that hydrodynamic structures

involving thousands of particles manifest in the process

and that the code used to simulate this phenomenon

cannot handle more than a few hundreds, this situation

can simply not be examined. In this perspective, a full

MPI implementation on large distributed clusters is a real

breakthrough.

Compared to our previous work [10], [11], [2], we

present here our new code PeliGRIFF. This new ver-

sion of our DEM-DLM/FD approach is full MPI and

enables us to extend signifi cantly the number of par-

ticles present in our systems. We illustrate the robust

capabilities and satisfactory performances of PeliGRIFF

on the 2D/3D sedimentation and fluidization of isometric

polygonal/polyedral particles in a Newtonian with colli-

sions.

II. GOVERNING EQUATIONS

Let � be a bounded domain of 	�
����� ��� � ���
and ��� its boundary. Suppose that � is fi lled with ���
rigid particles ��� � � ���� !� �"� � �#�$� . For simplicity,

we consider �#� 	%� , the extension to the multi-body

case being straightforward. Please note that we shall

work with dimensionless quantities throughout the whole

paper and distinghuish any dimensional quantities by a

”star” symbol.

In the formulation below, we consider the case of

mixed boundary conditions. Let us assume that ��� can

be sub-divided in &�' and &)( on which velocity *�+ and

pressure , + fi elds satisfy: * + 	 * +- .�/ 0 &1' (1)� � 2 + 34+ � * + �15�, + � 6 + 	87 +-�9�/ 0 &)( (2)

where 6 + is the unit outward normal vector to &)( ,2 + the fluid viscosity and :�+ 	 (; � <=*�+?>@<=*�+ A � the

rate-of-strain tensor. Governing equations can be non-

dimensionalized by introducing the following scales :B�C
for length, D C for velocity,

B�C E D C for time, F�+G�D ;C for

pressure and F�+G�D ;C E B�C for rigid-body motion Lagrange

multiplier. The variational combined momentum equa-

tions that govern both the fluid and solid motion reads

[1]:

1) Combined momentum equationsH�I4J ��*��� >4*LK <=*�M�K N�� OP5 H�I ,�<�K N���O> �
��� C H I � 3 � *Q�QR 3 � N�� � O> H �1S A T U K N���O 	 H -�9 7 -�9 K N���&)�WV�NP�YX1' � �Z�

(3)
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� F �5 � � � � � J ������ 5���� 7 +	 + M K 
> J�� � ����� >� � � �PK ?M�K ���#5�� ��� C � K 

5�� ��� C � K � ��� � 5 H �1S A T U K�� 
 >�� ��� � � O
	�� ��
%�Y	 
 ���Y�Y	��
 (4)H ��S A T � K � *L5!� � >� �!� � ��O 	  �WV � ��"Z� � �

(5)

2) Continuity equation5 H I$# <�K *���O 	  �WV # �!%Q' � �Z� (6)

where * � X - . � �Z� , , �&% -�9 � �Z� , U �'"Z� � � denotes

the distributed Lagrange multiplier vector, � � 	Q

the particle translational velocity vector,  � 	 �
 the

particle angular velocity vector, (� the number of non-

zero components of  (if � 	%�
,  	 �  �  � )+* � and(� 	 �

, else (� 	 � ), � N1� # � � � 
4� ��� the test functions for� *Q� ,�� U � �P�  � respectively, � C � �Y	 
 the contact forces,� � � 	�
 the vectors between particle gravity center

and contact point,
�

the position vector with respect

to particle gravity center,

� � 	-, + E � F�+. B 
C ��� 	 the

dimensionless particle volume,
, + the particle mass,� � 	

� +� E � F +. B 
 / ;C � ��	 �
 0 �
 the dimensionless particle

inertia tensor, F +.!� 	 the particle density,
7 + � 	�


the gravity acceleration, 	 + � 	 the gravity acceler-

ation modulus,
� � C 	21 34 5 6 7 68 3 the Reynolds number,��� 	:9 3 7 65�;6 the Froude number and F � 	 1 3<1 34 the density

ratio.

In equations above, we have introduced the following

functional spaces:X1' � �� 	>= NP�!? ( � �Z� 
 @ N 	  / 0 &1' A (7)X - . � �� 	>= NP�!? ( � �Z� 
 @ N 	 * - . / 0 &�' A (8)B ;' � �� 	>= # � B ; � �Z� @ H IC# � O 	  A (9)%Q' � �� 	>= # � B ;' � �Z� @ # 	  / 0 &)( A (10)% -�9 � �� 	>= # � B ;' � �Z� @ # 	 , -�9 � 7 -�9 	 5�, -�9 6 / 0 &1( A
(11)"?� � � 	 ? ( � �=� � � � 
 (12)

III. COLLISION MODEL: DEM SOLVER

Binary hard sphere model and soft sphere model are

the two categories of collision model for particulate

flows [12]. For the hard sphere model, the momentum

exchange between two colliding particles takes place

exactly at the time when the two particles touch. In

contrast, for the soft sphere model, the velocity of col-

liding particles is determined from Newton’s equations

of motion with collision forces of soft potential being

a function of separation or overlap distances between

particles and possibly particles velocity [13], [14], as

shown in Figure 1. In our DEM granular solver, the

considered collision forces comprise:D an elastic restoring forceE�F G 	�H I�J � � 6 (13)

where
H I

denotes the normal contact stiffness,
J � �

the overlapping distance between particles  andK
and 6 the unit normal vector pointing between

particles  and
K

gravity centers.D a viscous dynamic forceE 
 I 	 5 � L I M � � �$� I (14)

in the normal direction to account for the dissipative

aspect of the contact, where
L I

is the normal

dynamic friction coeffi cient,
M � � 	ON�P NRQN�P / NRQ the

reduced mass of particles  and
K

and �$� I the

normal relative velocity between particles  and
K
.D a tangential friction forceE A 	 5 M  0 = S�C @ E�F G @ � @ E 
 A > E . @ A T (15)E 
 A 	 5 � L A M � � �$� A (16)E . 	 5 H . H A 6' �$� A � � (17)

where
E 
 A denotes the dissipative frictional contri-

bution,
L A the dissipative tangential friction coeffi -

cient, ��� I the tangential relative velocity between

particles  and
K
,
E . the static frictional contribution

which behaves like an incremental spring that stores

energy during the time of contact � C and
H . the static

friction coeffi cient. Note that the magnitude of the

tangential friction force is limited by the Coulomb

frictional limit calculated with the Coulomb dy-

namic friction coeffi cient
S C

.

The total collision force acting on a particle  is

the sum of contributions related to the contact with

neighbouring particles j :� C � 	 � �:� C � � 	 � � � E F G > E 
 I > E A � � � (18)

IV. COMPUTATIONAL FEATURES

Details about the features of our numerical and com-

putational approach can be found in our last contribu-

tion to the literature [2]. For the sake of conciseness,

we merely sum up below the main ingredients of our

strategy:
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, ,0 0� � J � �
� � � �

Fig. 1: Contact between two particles:
� � and

� �
denote

gravity center of particles  and
K

respectively,
,

the

contact point, 0 and � unit normal and tangential vectors

at the contact point respectively and
J � �

the overlapping

distance

D the solving algorithm is based on operator-splitting

techniques, i.e. at each time step we solve the

following sequence of sub-problems:

1) a degenerated Stokes problem to impose in-

compressibility (divergence free of velocity

fi eld) solved by an Uzawa/PCG (precondi-

tioned conjugate gradient) iterative procedure,

2) a purely advection problem treated by a

Taylor-Galerkin wave-like method,

3) a purely diffusive (viscous) problem solved by

a PCG iterative procedure,

4) a purely granular problem to predict particles

velocity and position

5) a DLM/FD problem to account for fluid/solid

interactions solved by an Uzawa/PCG iterative

procedure to correct particles and fluid veloc-

ity,

6) a purely granular problem to correct particles

position (and possibly velocity in case of fur-

ther collisions).

Compared to [2], we add the correction step 6, as

suggested by Glowinski [1] and used by us in [10],

[11].D the spatial discretization is of the Finite Ele-

ment type with triangular P1isoP2/P1 (Pironneau-

Bercovier) and tetraedral P2/P1 (Taylor-Hood) ele-

ments for the velocity and pressure fi elds in 2D and

3D respectively.D the spatial discretization of the distributed Lagrange

multiplier fi eld is based on the collocation-point

method that assumes that each particle is cover by

a set of points on which the test functions are Dirac

measures [1], [2]. A special treatment is necessary

as two particles collide (see [2] for more details).

Figure 2 illustrates the set of points of two colliding

circular cylinders in 2D.D the granular sub-problem is solved by a second-

order accurate leap-frog scheme and a highly ef-

fi cient linked-cell algorithm is employed to detect

particle collisions [15].D the fluid solver is parallelized with classical domain

decomposition technique implemented in PELI-

CANS platform with open source PETSc library for

all matrix operations.D the granular solver runs in serial mode but its

computational cost never exceeds more than 5% of

the whole computing time. The specifi c MPI com-

munications implemented in the DLM/FD problem

consists of reduction and broadcast to and from the

master process on which the granular solver runs

and all other processes. This temporary solution

(prior to the parallelization of the granular solver)

shows good computational and satisfactory scalabil-

ity properties.

Fig. 2: DLM/FD set of points for two colliding circular

particles

V. RESULTS

We illustrate here the robust capabilities of PeliGRIFF

on the effect of particle shape in sedimentation and

fluidization problems. Additional results beyond the ones

shown below will be presented during our oral presen-

tation at the conference (including movies to highlight

the dynamic feature of this type of flows). In the paper

here, we restrict the number of particles to �=� �    � for

clarity purposes in fi gures.

In the sedimentation problem, the motion of solid

bodies is driven by the density difference with the fluid.

The issue of chosing scales of velocity D C and lengthB�C
to non-dimensionalize results is not straightforward.

Since in all cases considered in this paper inertia is non-

negligible, we suggest to estimate D C based on a balance

between inertia and buoyancy [16], [2]. We chose for all
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particle shapes
B�C
	 : +F , where : +F is the diameter of

a circular cylinder (respectively sphere) having the same

surface (respectively volume) as the particle. Therefore,

we have:

� ��� � R F +G : +F D ;C '� 	���: + ;F� � F +.Q5LF +G � 	 +
� D C ' 	 � ��: +F� F +.Q5PF +GF +G 	 + (19)

� � � � R F +G ��: + ;F D ;C '� 	���: + �F	 � F +.Q5PF +G � 	 +
� D C ' 	 � � : +F� F +. 5LF +GF +G 	 + (20)

For multi-body sedimentation problems, we correct the

velocity scale D C by the Richardson-Zaki law for hin-

dered settling and thus we get:D C 	 D C ' � � 5�
�� � (21)

where 
 is the solid surface/volume fraction.

The fi rst situation refers to the settling of a single

particle in a plane infi nite channel. The ratio between the

channel width and the particle diameter is set to 4. We

consider three isometric particle shapes: an ideal circular

cylinder, a square and a triangle. Figure 3 presents the

vorticity contours at relatively high Reynolds numbers
���

(between 350 and 500) for the three different shapes.

Since in all cases,
� �

is far above the critical Von

Karmann transition
� � C��� � 5 �  , the flow is clearly

in the vortex shedding regime. Whereas the ideal cir-

cular cylinder periodicially oscillates with respect to

the channel vertical symmetry plane and sheds alternate

vortices, the coupling of hydrodynamic instabilities with

the particle momentum transfer between translational to

rotational motion leads to an almost chaotic trajectory

of the two angular particles. The transition to organized

chaos is even more noticeable in the case of the triangle.

The second situation pertains to the collective behavior

of 300 triangles settling in a closed rectangular box at

low
� �� �

. The corresponding solid surface fraction

is
� 

%. The initial particles pattern is randomly homo-

geneous. The computation is performed up to the point

when all particles have settled to the bottom of the box.

The dimensionless time-step and grid size employed in

this simulation are �#� 	���� � �� � and � 	 � E�� 	 , which

implies that 16 collocation points are used over the

diameter of each particle. Around 30 000 time steps are

required to simulate the whole sedimentation process.

This computation was performed in serial mode for a

total computing time of approximately
� �

hours. Here

���� �   � �� � �  � ��8� � 
Fig. 3: Vorticity contours for a single particle settling in

an infi nite channel at
��� ��� � �  R �   � : effect of particle

shape, transition from periodic flow (circular cylinder)

to organized chaos (triangle)

the numerous multi-body collisions occuring during the

sedimentation process are properly handled by the DEM

solver. In particular, the modelling of the packing of

angular particles did not cause any diffi culty, as exhibited

in Figure 4-� 	8� ��� 	 .
The third situation concerns the settling of 1528 iso-

metric particles in a 3D closed cuboid box at
� �� � �

.

As in the 2D case, at initial time, particles are ran-

domly and homogeneously set in the domain and the

solid volume fraction is
� 

%. The mesh comprises
� � �

million fi nite elements,
!���    

degree-of-freedom

(dof) of pressure and
�	�� 

million dof of velocity.

The dimensionless time-step and grid size employed

in this simulation are �#� 	 � � �  � � and � 	W� E � 
,

which implies that 10 collocation points are used over

the diameter of each particle. Around 10 000 time

steps are required to simulate the whole sedimentation

process. This computation was performed in distributed

mode on 32 AMD Barcelona
��� � Ghz processors of a

Linux Cluster in 64bits for a total computing time of

approximately � 	 hours, i.e.
�

days. We illustrate the

particle pattern together with iso-contours of settling

velocity in 3 cutplanes for both the case of spherical
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� 	 ��� � � 	 � � � �

� 	!� ��� � � 	8� ��� 	
Fig. 4: Sedimentation of 300 triangles in a closed box

at
����8�

, starting from an initial homogeneous layout:

particles pattern with vertical velocity contours

and cubic particles. Let us mention that the simulation

of 3D angular particles settling in a fluid has, to the best

of our knowledge, never been reported in the literature

such that it is fair to say that this result is truely novel.

VI. CONCLUSION AND PERSPECTIVES

We proposed a new DNS approach to study particulate

flows with collisions based on a DLM/FD formula-

tion for fluid /solid interactions and a DEM method

for solid/solid interactions. We showed that our code

highlights a great potential to study a large range of

particulate flows and to address the effect of particle

shape. Thanks to our parallel implementation, our new

code, PeliGRIFF, is able to manage a large collection of

particles and permits to extend the current capabilities

reported in the literature in the fi eld of DNS of particulate

flows by almost a decade (in 3D from �=� �    � to

�=� �     � ).
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