**Commenced**in January 2007

**Frequency:**Monthly

**Edition:**International

**Paper Count:**30184

##### Migration of a Drop in Simple Shear Flow at Finite Reynolds Numbers: Size and Viscosity Ratio Effects

**Authors:**
M. Bayareh,
S. Mortazavi

**Abstract:**

**Keywords:**
drop migration,
shear flow,
front-tracking method,
finite difference method.

**Digital Object Identifier (DOI):**
doi.org/10.5281/zenodo.1085435

**References:**

[1] Taylor, G.I., The deformation of emulsions in definable fields of flow, Proc,Ray.Soc. (London), 1934, A146, 501-523.

[2] Karnis,A. and Mason,S.G., Particle motions in sheared suspensions. XX╬Ö╬Ö╬Ö. Wall migration of fluid drops, J.Colloid and Inerface. Science, 1967, 24, 164-169.

[3] Halow,J.S., and Willis,G.B., Radial migration of spherical particles in Couette system, AICHE J., 1970, 16, 281-286.

[4] Rallison, J.M., The deformation of small viscous drops and bubbles in shear flows, Annu, Rev. Fluid Mech., 1984, 16, 45-66.

[5] Magna, M. and Stone, H.A., Buoyancy-driven interactions between two deformable viscous drops, J.Fluid Mech, 1993, 256, 647-683.

[6] Zhou, H. and Pozrikidis,C., The flow of suspensions in channels: single files of drops, Phys. Fluids, 1993, A5(2), 311-324.

[7] Feng, J., Hu, H.H., and Joseph, D.D., Direct simulation of initial value problems for the motion of solid bodies in a Newtonian fluid. Part2. Couette and Poiseuille flows, J.Fluid Mech, 1994, 277, 271-301.

[8] Li, X., Zhou H. and Pozrikidis,C., A numerical study of the shearing motion of emulsions and foams, J.Fluid Mech, 1995, 286, 374-404.

[9] Loewenberg, M. and Hinch, E., Numerical simulation of a concentrated emulsion in shear flow, J.Fluid Mech., 1996, 321, 395-419.

[10] Esmaeeli, A., and Tryggvason, G., Direct numerical simulations of bubbly flows Part1. Low Reynolds number arrays, J.Fluid Mech, 1998, 377, 313-345.

[11] Mortazavi, S.S. and Tryggvasson, G., A numerical study of the motion of drop in Poiseuille flow, part1: lateral migration of one drop, J.Fluid Mech, 1999, 411, 325-350.

[12] Esmaeeli, A., and Tryggvason, G., Direct numerical simulations of bubbly flows Part2. Low Reynolds number arrays, J.Fluid Mech, 1999, 385, 325-358.

[13] Balabel A., Binninger B., Herrmann M. and Peters N., Calculation of droplet deformation by surface tension effects using the Level Set method, J. Combustion Science and Technology, 2002, 174, 257-278.

[14]

[Crowdy D.G., Compressible bubbles in Stokes flow, J. Fluid Mech., 2003, 476, 345-356.

[15] Yoon Y., Borrell M., Park C.C., and Leal G., Viscosity ratio effects on the coalescence of two equal-sized drops in a two-dimensional linear flow, J. Fluid Mech., 2005, 525, 355-379.

[16] Norman, J.T., Nayak, H.V., and Bonnecaze T.B., Migration of buoyant particles in low-Reynolds-number pressure-driven flows, J. Fluid Mech., 2005, 523, 1-35.

[17] Yang B.H., Wang J., Hu H.H., Pan T.W., and Glowinski R., Migration of a sphere in tube flow, J. Fluid Mech., 2005, 540, 109-131.

[18] Sibillo, V., Pasquariello, G., Simeone, M., Cristini, V., and Guido, S., Drop deformation in micro confined shear flow, PhysRevLett, 2007, 97, pp. 2-4.

[19] Zhao, X., Drop break up in dilute Newtonian emulsions in simple shear flow: new drop break up mechanism. J. Rheology, 2007, 51, 367-192.

[20] Unverdi, S.O., and Tryggvason, G., Computations of multi-fluid flows, J. Physics, 1992, D60, 70-83.

[21] Ho, B. P., and Leal, L. G., Inertial migration of rigid spheres in twodimensional unidirectional flows, J. Fluid Mech., 1974, 65, 365-383.

[22] Vasseur, P., and Cox, R.G., The lateral migration of a spherical particle in two-dimensional shear flow, J. Fluid Mech., 1976, 78, 385-402.

[23] Janssen, P.J.A., and Anderson, P.D., A boundary integral model for drop deformation between two parallel plates with non-unit viscosity ratio drops, J. of Computational Physics, 2008, 227, 8807-8819.