
 

 

 
Abstract—A numerical solution of the initial boundary value 

problem of the suspended string vibrating equation with the 
particular nonlinear damping term based on the finite difference 
scheme is presented in this paper. The investigation of how the 
second and third power terms of the nonlinear term affect the 
vibration characteristic. We compare the vibration amplitude as a 
result of the third power nonlinear damping with the second power 
obtained from previous report provided that the same initial shape 
and initial velocities are assumed. The comparison results show that 
the vibration amplitude is inversely proportional to the coefficient of 
the damping term for the third power nonlinear damping case, while 
the vibration amplitude is proportional to the coefficient of the 
damping term in the second power nonlinear damping case.  

 
    Keywords—Finite-difference method, the nonlinear damped 
equation, the numerical simulation, the suspended string equation 

I. INTRODUCTION 
N this work, the numerical simulation of a heavy and 
flexible vibrating suspended string with finite length a with 

the particular nonlinear damping term is studied.  
   The vibration equation can be shown as [1] 
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where ( , )u x t is the horizontal displacement of the string at   
( , )x t , α  is the coefficient of the damping term and a positive 
number, 1≥c .  

The string being investigated is assumed to be heavy and 
flexible with the length of a . In addition, the string is assumed 
to have a uniform density and be suspended with the upper 
end fixed and the lower end free.  

It is known that Eq. (1) is used to explain the vibration of 
the suspended string without taking into account the damping 
term. To consider the damping term, [2] showed the existence 
of time-periodic solution for the suspended string equation 
with the linear damping term by assuming the periodic initial 
function. The global solution of Eq. (1) for an energy decay 
with the nonlinear external force was also shown in [3]. The 
numerical solution without the damping term was studied by 
using the finite difference method and proposed in [4]. The 
solutions were found to agree with those obtained by the 
Crank-Nicolson method in [5]. 
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The numerical solution of (1) with the first power linear 

damping term (c=1) and the second power nonlinear term 
(c=2) is studied in [6]. The purpose of this paper to further 
investigate the effect of the second power nonlinear term to 
the suspended string vibration. In this work, we use a finite 
difference scheme to find the numerical solution of vibrating 
equation in Eq. (1) with the third power nonlinear damping 
term, i.e. 3c = . The results are compared with the solutions of 
the vibrating equation with the second power nonlinear 
damping term.  

II. THE METHOD OF SOLUTION 
To apply the finite difference method to Eq. (1), the initial 

condition has been modified as follows
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The solution domains (0 < x < 1, t > 0) are divided into 
subintervals Δx  and Δt  in the direction of the position x  and 
of the time t, respectively. The numerical solution at the grid 
point is by substituting utt, uxx, ux  and ut in Eq. (2) by the 
central finite difference as
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where ( )1 , ,n
mu u x t k+ = + ( ), ,n

mu u x t= ( )1 , ,n
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(m = 1,…, M) and n is the time step (n = 1,…, N ), while h and 
k are the mesh size in x and t, respectively. 

 

  For the third power nonlinear damping case (c = 3), the last 
term of left hand side of Eq. (3) can be shown as 

( ) ( ) ( ) ( )3 2 2 331 1 1 1 1 1 1 13 3 .+ − + + − + − −− = − + −n n n n n n n n
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Substituting Eq. (4) into Eq. (3), we have  
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where
 
p = k2/h       
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Eq. (5) can be classified into 4 different cases depending on 
the values of n and m. We then obtain the finite difference 
schemes for the numerical solution as follows: 
 

Case 1: n = 0 and m = 1, 2, 3,…, M-1 
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Case 2: n > 0  and m = 1, 2, 3,… , M-1 
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Case 3: n = 0 and m = M  
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Case 4: n > 0 and m = M             
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The finite difference schemes (6)-(9) has been programmed 
in MATLA and the numerical solutions are shown graphically 
as to be discussed in the next section. 

III.  RESULTS AND DISCUSSION 

The numerical simulation of the vibrating suspended string 
equation accounting for the second and third power nonlinear 
damping cases under the same initial shape; i.e. sin(7x), and 
the various values of α ; i.e. α = 0.5, 1.3, 2 are illustrated in 
Figs. 1 and 2, respectively. We have found that the amplitude 
of vibration decreases rapidly in case of the second power 
nonlinear damping accounted for especially when alpha is less 
than 1.2. It can be seen from Fig. 1 that the frequency of the 
vibration is the same as the frequency of the initial shape. In 
addition, the amplitude of vibration is greater than an interval 
of -1 to 1 when alpha is larger than 1.3. 

 

The solution of the vibration equation is quite different if 
the third power nonlinear damping is considered as shown in 
Fig. 2. That is, the amplitude of vibration increases gradually 
with time for every value of alpha, while the frequency of 
oscillation demonstrates both decrease and increase when 
compared with the frequency of an initial shape. Moreover, 
the amplitude of vibration decreases when alpha increase as 
shown in Fig. 2. To investigate how initial velocity affects the 
solution, the initial velocity has been varied and assigned to 
equal to its position; i.e. ( )xψ  = 0, 1 and x. The numerical 
solution shows that the vibration shape of the suspended string 
with the third power nonlinear damping barely change as 
illustrated in Figs. 2-5.   
 
 
  .      

 
 
   
 
 
 
 
Fig. 1 Graphical comparison of the vibration displacements with the 
second power nonlinear damping term for different values of α and 

time (without the initial velocity; ( )xψ = 0  m/s) 
 
 
 
 
 
 
 
 
 
 
 
Fig. 2 Graphical comparison of the vibration displacements with the 

third power nonlinear damping term for different values of α and 
time (without the initial velocity; ( )xψ = 0  m/s) 

 
 
 
 
 
 
 
 
 
 

 
Fig. 3 Graphical comparison of the vibration displacements with the 

third power nonlinear damping term for different values of α and 
time (with the initial velocity ( )xψ = 1 m/s) 
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Fig. 4 Graphical comparison of the vibration displacements with the 

third power nonlinear damping term for different values of α and 
time (with the initial velocity ( )xψ = x m/s) 

 
Fig. 5 shows the vibration when the third power nonlinear 

damping term is taken into account. Three different values of 
α, i.e. α = 18, 1,000 and 10,000 have been chosen and it is 
found that the frequency of oscillation decrease as α 
increases. In our experiment, several values of α have been 
assumed and the vibration amplitudes are always within the 
interval of -4 to 4. In addition, the vibrations are almost the 
same when α is large as illustrated in Fig. 5 when α = 1,000 
and α = 10,000.  
 
 
 
 
 
 
 
 
 
 
 
Fig. 5 Graphical comparison of the vibration displacements with the 

third power nonlinear damping term for different values of α  
(without the initial velocity; ( )xψ = 0 m/s) 

 
Unlike the second power nonlinear damping term, the third 

power results in a increase in the amplitude of vibration. As a 
consequence, the resonance can not be minimized by adding 
the third power nonlinear damping force while  the second 
power nonlinear damping term prevents resonance from 
occurring under the defined coefficient of the damping term. 

The stability condition of the finite difference scheme is 
given by 2mp <1 where p = k2/h, h = 0.1 and k = 0.05. The 
study can be further carried out by investigating various 
nonlinear damping cases i.e. c > 3 and the external forces are 
added to the string equation. 

IV. CONCLUSION 
The numerical solution based on the finite difference 

method for the suspended string equation with the third power 
nonlinear damping term is shown. The coefficient and the 
power of the nonlinear damping term play a important role in 
dictating the amplitude of vibration.  

 
For the third power nonlinear damping case, the amplitude 

of vibration increases which is opposite to the second power 
nonlinear damping case which demonstrates the decrease in 
the amplitude.  
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