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A high order Theory for Functionally Graded
Shell

V. V. Zozulya

Abstract—New theory for functionally graded (FG) shell based Various theories of FG plates and shells have been

on expansion of the equations of elasticity forctionally graded
materials (GFMs) into Legendre polynomials seriess Hbeen
developed. Stress and strain tensors, vectors gplatiements,
traction and body forces have been expanded intgendre
polynomials series in a thickness coordinate. He same way

functions that describe functionally graded relasichas been also

expanded. Thereby all equations of elasticity idizlg Hook’s law
have been transformed to corresponding equatioms Ffuurier
coefficients. Then system of differential equatiois term of
displacements and boundary conditions for Fourgafficients has
been obtained. Cases of the first and second ajppatirns have
been considered in more details. For obtained banyadhlue
problems solution finite element (FE) has been usedlumerical
calculations have been done with Comsol Multiphy/sicd Matlab

Keywords—Shell, FEM, FGM, Legendre polynomial

INTRODUCTION

developed last decades [1, 2, 4, 6, 13]. The nzteroperties
of FG plates and shells can be described by vafimetional
relations. Most researchers use the power-law imct
exponential function, or sigmoid function [1, 2,t6]describe
the volume fractions. Models of FG plates and sheelé based
on the Kirchhoff-Love, Timoshenko-Mindlin hypothesobr
used more complicated high order theories. Mathiealbt
rigorous and promising for engineering applicatiapproach
to creation high order hierarchical models of @aaed shells
is based on expansion of the 3-D equations of ielgsin
Legendre polynomials series in term of thicknesschSan
approach have been used widely for developmentowsri
theories of isotropic [3, 12] and anisotropic [Ghtes and
shells. The method of Legendre polynomials sengmesion
has been used widely in our previous publicatioos f
development theory of thermoelasticity of platesl aells

RECENTyearS the FGMs have been applied in a science aniih considering close mechanical and thermal arinfa4-
engineering, as reflected in numerous papers [19, 125]. More specifically, problem of heat conductirnd
They are advantageous over classical homogenedif¥lateral contact of plates and shell through theat-

materials with only one material constituent, beseakrGMs
consist of more material constituents and they doenlthe
desirable properties of each constituent. As aessprtative
example for FGMs, we just mention the metal/ceralr@dVis,
which are compositionally graded from a ceramicsghto a
metal phase. Metal/ceramic FGMs can
advantageous properties of both ceramics and mstals as
the excellent heat, wear, and corrosion resistaotesramics
and the high strength, high toughness, good malsttitysand
bonding capability of metals without severe intérteermal
stresses.

The FG thin-walled structures have numerous apijiics,

conducting layer with considering a change of layérkness
in the process of the shell deformation has beandtated in
[14-16, 20, 24, 25]. The developed approach havenbe
applied to the laminated composite materials witkssbility
of delamination and thermoelastic contact in terapee field

incorporaté@ [17, 18, ], the pencil-thin nuclear fuel rods aeting in [19]

and some other engineering problems in [21-23].

In this paper we are developing new theory for $¥@lls
based on expansion of the equations of elasticityGFMs
into Legendre polynomials series. More specificallye
expanded functions that describe functionally gdaddations
into Legendre polynomials series and find Hook'w Ithat

especially in reactor vessels, turbines and manlyerot related Fourier coefficients for expansions ofsgrand strain

applications in aerospace engineering [9].
engineering structures. In conventional laminatedhgosite
structures, homogeneous elastic laminas are botuigziher
to obtain enhanced mechanical properties. Howetee,
abrupt change in material properties across therfade
between different materials can result in largeeriaiminar
stresses leading to delamination [7]. One way tercame

these adverse effects is to use FGMs in which ra&ter

properties vary continuously by gradually changimg volume
fraction of the constituent materials. This elimewminterface

LamihatdNumerical examples are presented.
composite materials are commonly used in many kiofds

I. 3-D FORMULATION
Let a linear elastic body occupy an open in 3-Dlidian
space simply connected bounded domdiIR® with a
smooth boundarydV . We assume that elastic body is
inhomogeneous isotropic shell of arbitrary geometith \2h
thickness. The domain ¢ = Qx[-h/h] and it is embedded
in in Euclidean space. Boundary of the shell capfesented

in the formdV =SO Q" 0Q™. Here Q is the middle surface

problems of composite materials and thus the streggthe shell,dQ is its boundaryQ* andQ are the outer sides

distributions are smooth.
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and S=Qx[-h,h] is a sheer side.
Stress-strain state of the elastic body is defihgdstress
o' and &, strain tensors and displacements traction p,
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and body forcesh vectors. These quantities are not where for isotropic shell

independent, they are related by equations ofieigst
For convenience we transform above equations stieity

taking into account that the radius vect®(x) of any point in

1 o 2

= 1°0,0, +21°6,0,,1° = A0=
ukl + iu i1~k /J 2(1+V) (1_ 2/)

®)

domain V, occupied by material points of shell may be Substituting Cauchy relations (3) in Hook’s law éid then

presented as

R(X) =rx,)+xn(x,) 1)

wherer (X, ) is the radius vector of the points located on the
middle surface of shelln(x,)is a unit vector normal to the

middle surface.
Let us consider that x, =(x",x%)

coordinates associated with main curvatures of rthiédle
surface of the shell. In order to simplify 3-D etjoas of
elasticity we introduce orthogonal system of cooatks
related to main curvatures of the middle surfac¢hef shell.
Such coordinates are widely used in the shell thelor this
case the equations of equilibrium have the form

are curvilinear

a('A'Zo-ll) +a(Ai0-12) +AA2 13 +0- a_'ai_‘_
0x, 0x, 20X,
0
+0-13A1A2k1_0-226ﬁ + Aﬁp 1= 0,
0(A0,,) + (AT ;) + AAZ 9%+ o aﬁ_,_
0x, 0x, 2 ox,
A= %A +AAD, =0,
0(A03,) + a(A10-32) + 0(AADTS,) (2)
0x, 0X, 0%,
_UllAlAzkl_ UzzAlAzkz + AlAp 3= 0
Cauchy relations have the form
£, = 1 au 1 6Ai A\, vy,
A 0X1 AA, 0x,
Ep = 1 aU 1 aAZ 1+k2u31533:%,
Az 6x AZA1 0x, 0
=t a_ul_iaﬁuz RN
A\ox, A 0x, Al dx, A, X,
513 :% klul 1 al g :%_k2u2+i% (3)
0%, A 0x, 0%, A, X,

Here A, (X,X,) =+/r (X, X,) B (X,,X,) are coefficients of the
first quadratic form of the middle surface of thbek,
k,(x.X,) are it main curvatures.

In the case if inhomogeneous of the shell considts
graduation of the elastic modulus in thg, direction

generalized Hook’s law for FG elastic shell we esgmt in the
form

0, (X) =Gy ()& (X), Gy (X) = E(X) 5, (4)
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Hook's law into equations of equilibrium (2) we abt
differential equations of equilibrium in the formf o
displacements

A (U (x) +B,(x) =0 ©

Here

E(x)c)0,0, =

() A

where A‘f is a differential operator that correspond to the

A ()= @)

case of homogeneous equations of elasticity.
These equations will be used for elaboration of 2hB
equations for FGhells.

1. 2-D FORMULATION

If Let us expand the parameters, that describesstain
of the cylindrical shell in the Legendre polynorsiaderies
along the coordinate, .

u (x) =

8

2k+1 1%
) “2h

ulk(xa)Pk(w)'uik(X (Xa'XS)Pk(a))dX !

-h

{(x)R(@ 0 (x,) =2 1Ja.J (X, %) P (@),

Q
—
X
N—
Il
= x

2k +1 ¢

& ()= 21 (%) R(@ 1] (%) == [ (%0 3 R (@)
— - k k 2'( 1
p.(x)= 2P (%o ) Re(@) . P (%, )—7 P (%, %) R (@)dx,,

2Kt 1jq X, % ) P (@)dx, .

(8)

Substituting these expansions in equations (28pbtain
corresponding relations for Legendre polynomialgiese
coefficients.

Equations of equilibrium have the form

o(Ao) o(Adh) ., on
0x, 0X, 2 ox,

qk( )P(a)) bk

/\
\_/
1

inge
)

+ 0-13A1AJ( 1

« 0
(2P 6’)05 k3+A1A2fi( =0,
k k
6(A2021)+6(A10' )+ k aAZ +0'23A1AJ(2
0x, 0X, 2 ox,
0
0 Gy Tt A =0, ©
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o(AdY) o(AdL, EffL @) =f -
(aXl )+ (axz )_U]{(lAlAzkl_a-nglAJ(Z_ (16)
o+ AATE=0. o T T
38 8 _ 10 11 — 10 11 — |1 — 1
E=E° E L= L' —|u=|u|f=|f
h : . : : . : :

e 2k+1 (17)
U_ika(xa):AiAz h (C’ika_l(xa)+6ﬁk§3(xa)+...), Here Lir}m are differential operators that correspond to
v ok 2k+1, . . homogeneous elastic shell&™ =0"" E" are coefficients

f (X"’)_b' (X"’)+ (Ji3(x )_(_1) ai (X )) 10 that characterized inhomogeneous properties cstibé.
) (10) Now instead of one 3-D system of the differentgi&ions
Cauchy relations have the form in displacements (6) we have of 2-D infinite diéfatial
1 9uk 1 0A equations for coefficients of the Legendre’s polwyiel series
&= A 61 +A1A2 I uj + ks, expansion. In order to simplify the problem appmate
Xik 2 theory has to be developed and only finite set@fivers have
oo 10w 1 0A . Fhut to be taken into account in the expansion (8). Oumfethe
2 A0 AA X, * system of 'eq.uat'ions depends on a_ssumption regarding
P 1 a_Ulk_iaﬁuk +_1 a_Ug__la_Aauk tsi::glrlness distribution of the stress-strain paranseof the
Foalox, Ao ) Alax A ) '
« _ 1 ouf —lu U lll.  RESULTS AND DISCUSSION
L A 0x 2 We consider here the case of relatively thick shell
« 1 au Kk ) A1) Therefore we will keep three members in polynomial
523:Ea—‘kzuz+u_z,53szu_s- expansion (8). In this case we will get the secamder
% approximation equations for functionally gradedlishén this
where case the stress-strain parameters, which desdréstate of
uk (x ): 2k+1(u_k+1(x )+uvk+3(x )+) the shell, can be presented in the form
_I a h 1 a 1

(12) — 0 1 2
g.(X)=0;(X,)RP(w)+0; (X, )R(w)+0(X,)P,(w
In order to transform Hook’s law in 1-D form we exyul ( ) ”( a) 0( ) ”( a) l( ) ”( a) 2( )

Young's E(X) in Legendre polynomials series & (x) = &7 (%) R (@) + &7 (%, ) B (@) + &7 (x, ) P (),
) u (x) =u’(x, )P (@) +u'(x, ) B(@) +u?(x, )P, (w), (18)
E(x)=2F (% )R () p.(x) =7 (X, )R (@) + B (%, ) R (@) + p*(%,) Px(@),
k1 b (x) =b° (%, ) B (@) +b' (%, ) P.(e0) +07 (%, ) P, (@)
Ek(xa):2';;1.[E(xa,x3)&(a))dx3. (13) ’ ' :
-h Taking into account formulae (15) for the coeffitie[1""
Substituting this expansion and expansions fosstaad Hook’s .Iaw for coefficients of the Legendre polyriate series
strain tensors in Hook’s law we obtain 1-D HookisvIfor expansion (15) has the form
Legendre polynomials series coefficients
» o oy = ¢, (ZEogk? +EE1€kT +2E zé‘kfj :
aijn(xa) :CI(J')kl ZZ o E' (Xa)glrdn(xa) (14) 3 5
r=1m
et e )
1 2 4 2 4
Jrm= _[Pn(xs)Pr (x)P, (x,)dx, (15) a'ijz = q?kl (g EZ‘g‘IEIJ +1_5E1£kil +(—5E0 +?5E2jgk2|J.
]

: . 519)
Substituting Cauchy relationg1) and Hook's law , NOW System of equations for displacements has aimees
form as (16), but it contains only four equationsand

(14) in _equatior_‘s Of_ equilibriumg) we (_’btain corresponding matrixes and vector have the form
differential equations in displacements. This gyste

00 01 ©

of equations contains infinite number of equations - E”lz

which are 2-D, they can be written in the form E= 5(1)2 512 512 (20)
] ] ]
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2 2, d%ul 1 3
—E 0 ZE 0 11,1 — 2 _ 12 2 —
w_[2E° 0| _u_|3 »_|5 Lls = 152 (“2“)(Rz+h ]“3' =0
"o 2E Y T 2, .
1 2
0 3F 0 5F 2 == 202, L = 0,248 = 0,23
2 2 o 4, 2, 2
‘E 0 ZE°+—E 0 54 du; ouy 1
a3 e 35 8 G =2 L = (1 20) T - fﬁ’ :
]| 1) ]
O EEI O _2E0+_4E2 22 2 /1 auS 0 _ 20 O 21, 1 5A a i
3 3 15 = L2000 =0,L%u = 0,2 = . (22)
4 2 4
—E'" 0 ~E* O —E" 0 5)| A ou?
12 _ |15 20_|3 21 _|15 2§u; == u;, nglulz = __i-
0 1;45E1 0 %EZ 0 %El 92u2 1 15
ouz = 2 —(A+2 ( +— Ju
, , Uy = H (3X12 ( ,U) R )t
“E°+—E? 0 Substituting these operators into (21) we obtastesy of
EU?Z =|° 35 differential equations which together with corresgiog
0 EEO LA = boundary conditions can be used for the stressistra
5 35 calculation for the second approximation shell tieo
o Material properties of an FGM are the functions/olume
2 o L o o u f0 ; ;
1 13 3 1 fractions and they are managed by a volume fracW@hen
Ly Ly Ly Ly O 0 us f; the shell is considered to consist of two materiaith
L= LY 0 L Li 0 Lj U= u; ¢ = f (21) Young's modulus E; and E, respectively, the effective
moLe Ly Ly oo g |wlt o |f) Young's modulusE(x,) given by the following power-law
0 0 0 L L LY u; f.? expression
0 0 Ly Ly Ly L3 |u] [fF X, +hY"

E(X3) = (Ez - El)( 2h

Substituting function (23) into equation (13) wéam

j +E (n20) (23
Most of operatorsL{}m are differential, they have the form

o’y Aou expressions for the Legendre polynomials coeffisidar the
00,,0 — 0 0 _ 3 0L .1 _
Ly =(4+2u) e’ Lidls = R dx, L =0, effective Young’s modulus
0
L%l iai 2=0,L%2=0L%’ = iai Elz(E2+E1)n EZ:(EZ_El)nh
hox ' Rox 1+n 2+ A +n?
0%u, 5(E, - E,) (n—1nh?
OOUO: /]+2 02 2_0 L10u0 O. E3:_ 2 24
L = == u) i R e (24)
2.1
ug = Sr':[ gu ut= (,] +2,u)a % ::]_é(ui For simplisity in this study we consider dimeticsge
% . X :
1 out A auy coordinates El—r and {3_F have been introdused.

1L ———3+/,1k1 2 Loouo Lso 2_

% Rox . Rox, = & 0 Calculations have been done for Young's modulusakemi
o o U u? .0 E,=1Pa and E/E,=2 and for Poison ratiov =0.3
Leally = H X2 (/] 2,u) Ly’ =0, respectively, other paramiters aR=0.25., h=0.25R and

3 au Ut 3 n=0.2. Numerical calculations have been done using
ug = ,u —2 Li ( 2u)— ——'lzlui, commercial software Comsol Multiphysics and Matlab.
o h Results of calculations are presented on Fig. h—3F
n /1 6u3 L1 31042 Fig. 1 shows the Legendre polynomials coefficdot the
Lt ki 0Ly _Ta displacements distribution versus the normalizedtle for the
3/] P 2 19 second approximation theory. These coefficients REM
Lo = _i,Llsogugz —ul,Liu=- ul solutions of the systems of differential equatiqa$) with
h 9x Rh Raxl differential operators (22). Fig. 2 shows displaeata and

stresses distribution versus normalized lengththiottness for
second approximation theory.
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Fig.1 mLegendre polynomials coefficients for the
displacements

Displacements u Displacements u,

?

Fig. 2 Displacements and stresses versus nhormdéngth
and thickness
On Fig. 3 are presented values of maximal displacgsn

U, and stresse#,, at the cross section situated at the mid
point of the shell with coordinaté, =0 versus ratitn/ R .

Displacements u, Stress o,
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Fig. 3 Displacementsl, and stresses,,versush/ R for
various exponents
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IV. CONCLUSION

The high order theory for FG axisymmetric cylindlishell
based on expansion of the axisymmetric equatiordasticity
for FMs
developed. Starting from axisymmetric equation®lasticity
for FGMs, The stress and strain tensors, vectors
displacements, traction and body forces and alsotifon that
describe functionally graded relations for Youngfeodulus
have been expanded into Legendre polynomials siritsm
of the shell thickness coordinate. Then all equetiof
elasticity including Hook's law have been transfetnto
corresponding equations for the Legendre’s polyadsrseries
expansion coefficients. The system of differenéiqliations in
term of displacements and boundary conditions foe t
coefficients of expansion has been obtained. Cafst® first
and second approximations have been consideredoie m
details. All necessary equations and heir coefiisidnas been
written explicitly and corresponding boundary-vapreblems
have been formulated. For numerical solution of th
formulated problems finite element (FE) has beeeduand
commercial software Comsol Multiphysics and Matlzove
been used. For validation of the proposed theodyaained
equations comparison with results obtained usingagns of
elasticity has been done for exponential functioor f
graduation law. Influence of different parametengloe stress-
strain state of the cylindrical shell has beenistld
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