Search results for: hollow silicon microneedle
258 Conversion in Chemical Reactors using Hollow Cylindrical Catalyst Pellet
Authors: Mohammad Asif
Abstract:
Heterogeneous catalysis is vital for a number of chemical, refinery and pollution control processes. The use of catalyst pellets of hollow cylindrical shape provide several distinct advantages over other common shapes, and can therefore help to enhance conversion levels in reactors. A better utilization of the catalytic material is probably most notable of these features due to the absence of the pellet core, which helps to significantly lower the effect of the internal transport resistance. This is reflected in the enhancement of the effectiveness factor. For the case of the first order irreversible kinetics, a substantial increase in the effectiveness factor can be obtained by varying shape parameters. Important shape parameters of a finite hollow cylinder are the ratio of the inside to the outside radii (κ) and the height to the diameter ratio (γ). A high value of κ the generally helps to enhance the effectiveness factor. On the other hand, lower values of the effectiveness factors are obtained when the dimension of the height and the diameter are comparable. Thus, the departure of parameter γ from the unity favors higher effectiveness factor. Since a higher effectiveness factor is a measure of a greater utilization of the catalytic material, higher conversion levels can be achieved using the hollow cylindrical pellets possessing optimized shape parameters.Keywords: Finite hollow cylinder, Catalyst pellet, Effectiveness factor, Thiele Modulus, Conversion
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3707257 Design of a Carbon Silicon Electrode for Iontophoresis Treatment towards Alopecia
Authors: Q. Wei, D. G. Hwang, Z. Mohy-Udin, D. H. Shin, J. H. Park, M. Y. Kang, J. H. Cho
Abstract:
This study presents design of a carbon silicon electrode for iontophorsis treatment towards alopecia. The alopecia is a medical description means loss of hair from the body. For solving this problem, the drug need to be delivered into the scalp, therefore, the iontophoresis was chosen to use in this treatment. However, almost common electrodes of iontophoresis device are made with metal material, the electrodes could give patients hurt when they using it, and it is hard to avoid the hair for attaching the hair. For this reason, an electrode is made with silicon material to decrease the hurt from the electrodes, and the carbon material is mixed in it for increasing conductance. The several cones with stainless material on the electrode make the electrode is able to void hair to attach the affected part. According to the results of a vivo-experiment, the carbon silicon electrode showed a good performance and in treatment comfortably.Keywords: Carbon silicon, drug delivery system, iontophoresis
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1706256 The Effect of Geometrical Ratio and Nanoparticle Reinforcement on the Properties of Al-Based Nanocomposite Hollow Sphere Structures
Authors: M. Amirjan
Abstract:
In the present study, the properties of Al-Al2O3 nanocomposite hollow sphere structures were investigated. For this reason, the Al-based nanocomposite hollow spheres with different amounts of nano-alumina reinforcement (0-10wt %) and different ratio of thickness to diameter (t/D: 0.06-0.3) were prepared via a powder metallurgy method. Then, the effect of mentioned parameters was studied on physical and quasi static mechanical properties of their related prepared structures (open/closed cell) such as density, hardness, strength, and energy absorption. It was found that, as the t/D ratio increases the relative density, compressive strength and energy absorption increase. The highest values of strength and energy absorption were obtained from the specimen with 5 wt. % of nanoparticle reinforcement, t/D of 0.3 (t=1 mm, D=400μm) as 22.88 MPa and 13.24 MJ/m3, respectively. The moderate specific strength of prepared composites in the present study showed the good consistency with the properties of others low carbon steel composite with similar structure.Keywords: Hollow sphere structure foam, nanocomposite, t/D (thickness, diameter), powder metallurgy.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2399255 Transient Heat Conduction in Nonuniform Hollow Cylinders with Time Dependent Boundary Condition at One Surface
Authors: Sen Yung Lee, Chih Cheng Huang, Te Wen Tu
Abstract:
A solution methodology without using integral transformation is proposed to develop analytical solutions for transient heat conduction in nonuniform hollow cylinders with time-dependent boundary condition at the outer surface. It is shown that if the thermal conductivity and the specific heat of the medium are in arbitrary polynomial function forms, the closed solutions of the system can be developed. The influence of physical properties on the temperature distribution of the system is studied. A numerical example is given to illustrate the efficiency and the accuracy of the solution methodology.Keywords: Analytical solution, nonuniform hollow cylinder, time-dependent boundary condition, transient heat conduction.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2859254 Study of Fast Etching of Silicon for the Fabrication of Bulk Micromachined MEMS Structures
Authors: V. Swarnalatha, A. V. Narasimha Rao, P. Pal
Abstract:
The present research reports the investigation of fast etching of silicon for the fabrication of microelectromechanical systems (MEMS) structures using silicon wet bulk micromachining. Low concentration tetramethyl-ammonium hydroxide (TMAH) and hydroxylamine (NH2OH) are used as main etchant and additive, respectively. The concentration of NH2OH is varied to optimize the composition to achieve best etching characteristics such as high etch rate, significantly high undercutting at convex corner for the fast release of the microstructures from the substrate, and improved etched surface morphology. These etching characteristics are studied on Si{100} and Si{110} wafers as they are most widely used in the fabrication of MEMS structures as wells diode, transistors and integrated circuits.Keywords: KOH, MEMS, micromachining, silicon, TMAH, wet anisotropic etching.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1219253 Analytical Solution of Stress Distribution ona Hollow Cylindrical Fiber of a Composite with Cylindrical Volume Element under Axial Loading
Authors: M. H. Kargarnovin, K. Momeni
Abstract:
The study of the stress distribution on a hollow cylindrical fiber placed in a composite material is considered in this work and an analytical solution for this stress distribution has been constructed. Finally some parameters such as fiber-s thickness and fiber-s length are considered and their effects on the distribution of stress have been investigated. For finding the governing relations, continuity equations for the axisymmetric problem in cylindrical coordinate (r,o,z) are considered. Then by assuming some conditions and solving the governing equations and applying the boundary conditions, an equation relates the stress applied to the representative volume element with the stress distribution on the fiber has been found.Keywords: Axial Loading, Composite, Hollow CylindricalFiber, Stress Distribution.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1611252 High Performance of Hollow Fiber Supported Liquid Membrane to Separate Silver Ions from Medicinal Wastewater
Authors: Thidarat Wongsawa, Ura Pancharoen, Anchaleeporn Waritswat Lothongkum
Abstract:
The separation of silver ions from medicinal wastewater via hollow fiber supported liquid membrane (HFSLM) was examined to promote the performance of this technique. The wastewater consisting of 30mg/L silver ions and 120mg/L ferric ions was used as the feed solution. LIX84I dissolving in kerosene and sodium thiosulfate pentahydrate solution were used as the liquid membrane and stripping solution, respectively. In order to access the highest performance of HFSLM, the optimum condition was investigated via several influential variables. Final concentration of silver ions in feed solution was obtained 0.2mg/L which was lower than the discharge limit of Thailand’s mandatory.
Keywords: Hollow fiber, Liquid membrane, Separation, Silver ions.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2027251 Effect of CW Laser Annealing on Silicon Surface for Application of Power Device
Authors: Satoru Kaneko, Takeshi Ito, Kensuke Akiyama, Manabu Yasui, Chihiro Kato, Satomi Tanaka, Yasuo Hirabayashi, Takeshi Ozawa, Akira Matsuno, Takashi Nire, Hiroshi Funakubo, Mamoru Yoshimoto
Abstract:
As application of re-activation of backside on power device Insulated Gate Bipolar Transistor (IGBT), laser annealing was employed to irradiate amorphous silicon substrate, and resistivities were measured using four point probe measurement. For annealing the amorphous silicon two lasers were used at wavelength of visible green (532 nm) together with Infrared (793 nm). While the green laser efficiently increased temperature at top surface the Infrared laser reached more deep inside and was effective for melting the top surface. A finite element method was employed to evaluate time dependent thermal distribution in silicon substrate.Keywords: laser, annealing, silicon, recrystallization, thermal distribution, resistivity, finite element method, absorption, melting point, latent heat of fusion.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2888250 High Temperature Hydrogen Sensors Based On Pd/Ta2O5/SiC MOS Capacitor
Authors: J. H. Choi, S. J. Kim, M. S. Jung, S. J. Kim, S. J. Joo, S. C. Kim
Abstract:
There are a many of needs for the development of SiC-based hydrogen sensor for harsh environment applications. We fabricated and investigated Pd/Ta2O5/SiC-based hydrogen sensors with MOS capacitor structure for high temperature process monitoring and leak detection applications in such automotive, chemical and petroleum industries as well as direct monitoring of combustion processes. In this work, we used silicon carbide (SiC) as a substrate to replace silicon which operating temperatures are limited to below 200°C. Tantalum oxide was investigated as dielectric layer which has high permeability for hydrogen gas and high dielectric permittivity, compared with silicon dioxide or silicon nitride. Then, electrical response properties, such as I-V curve and dependence of capacitance on hydrogen concentrations were analyzed in the temperature ranges of room temperature to 500°C for performance evaluation of the sensor.Keywords: High temperature, hydrogen sensor, SiC, Ta2O5 dielectric layer.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2069249 Silicon Application and Nitrogen on Yield and Yield Components in Rice (Oryza sativa L.) in Two Irrigation Systems
Authors: Abbas Ghanbari-Malidareh
Abstract:
Silicon is a beneficial element for plant growth. It helps plants to overcome multiple stresses, alleviates metal toxicity and improves nutrient imbalance. Field experiment was conducted as split-split plot arranged in a randomized complete block design with four replications. Irrigation system include continues flooding and deficit as main plots and nitrogen rates N0, N46, N92, and N138 kg/ha as sub plots and silicon rates Si0 & Si500 kg/ha as sub-subplots. Results indicate that grain yield had not significant difference between irrigation systems. Flooding irrigation had higher biological yield than deficit irrigation whereas, no significant difference in grain and straw yield. Nitrogen application increased grain, biological and straw yield. Silicon application increased grain, biological and straw yield but, decreased harvest index. Flooding irrigation had higher number of total tillers / hill than deficit irrigation, but deficit irrigation had higher number of fertile tillers / hill than flooding irrigation. Silicon increased number of filled spikelet and decreased blank spikelet. With high nitrogen application decreased 1000-grain weight. It can be concluded that if the nitrogen application was high and water supplied was available we could have silicon application until increase grain yield.Keywords: Grain yield, Irrigation, Nitrogen, Rice, Silicon.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3262248 Rigorous Modeling of Fixed-Bed Reactors Containing Finite Hollow Cylindrical Catalyst with Michaelis-Menten Type of Kinetics
Authors: Mohammad Asif
Abstract:
A large number of chemical, bio-chemical and pollution-control processes use heterogeneous fixed-bed reactors. The use of finite hollow cylindrical catalyst pellets can enhance conversion levels in such reactors. The absence of the pellet core can significantly lower the diffusional resistance associated with the solid phase. This leads to a better utilization of the catalytic material, which is reflected in the higher values for the effectiveness factor, leading ultimately to an enhanced conversion level in the reactor. It is however important to develop a rigorous heterogeneous model for the reactor incorporating the two-dimensional feature of the solid phase owing to the presence of the finite hollow cylindrical catalyst pellet. Presently, heterogeneous models reported in the literature invariably employ one-dimension solid phase models meant for spherical catalyst pellets. The objective of the paper is to present a rigorous model of the fixed-bed reactors containing finite hollow cylindrical catalyst pellets. The reaction kinetics considered here is the widely used Michaelis–Menten kinetics for the liquid-phase bio-chemical reactions. The reaction parameters used here are for the enzymatic degradation of urea. Results indicate that increasing the height to diameter ratio helps to improve the conversion level. On the other hand, decreasing the thickness is apparently not as effective. This could however be explained in terms of the higher void fraction of the bed that causes a smaller amount of the solid phase to be packed in the fixed-bed bio-chemical reactor.
Keywords: Fixed-bed reactor, Finite hollow cylinder, Catalyst pellet, Conversion, Michaelis-Menten kinetics.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1597247 Nanoindentation Behaviour and Microstructural Evolution of Annealed Single-Crystal Silicon
Authors: Woei-Shyan Lee, Shuo-Ling Chang
Abstract:
The nanoindentation behaviour and phase transformation of annealed single-crystal silicon wafers are examined. The silicon specimens are annealed at temperatures of 250, 350 and 450ºC, respectively, for 15 minutes and are then indented to maximum loads of 30, 50 and 70 mN. The phase changes induced in the indented specimens are observed using transmission electron microscopy (TEM) and micro-Raman scattering spectroscopy (RSS). For all annealing temperatures, an elbow feature is observed in the unloading curve following indentation to a maximum load of 30 mN. Under higher loads of 50 mN and 70 mN, respectively, the elbow feature is replaced by a pop-out event. The elbow feature reveals a complete amorphous phase transformation within the indented zone, whereas the pop-out event indicates the formation of Si XII and Si III phases. The experimental results show that the formation of these crystalline silicon phases increases with an increasing annealing temperature and indentation load. The hardness and Young’s modulus both decrease as the annealing temperature and indentation load are increased.Keywords: Nanoindentation, silicon, phase transformation, amorphous, annealing.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1882246 Exploiting Silicon-on-Insulator Microring Resonator Bistability Behavior for All Optical Set-Reset Flip-Flop
Authors: P. Nadimi, D. D. Caviglia, E. Di Zitti
Abstract:
We propose an all optical flip-flop circuit composedof two Silicon-on-insulator microring resonators coupled to straightwaveguides by exploiting the optical bistability behavior due to thenonlinear Kerr effect. We used the transfer matrix analysis toinvestigate continuous wave propagation through microrings, as wellwe considered the nonlinear switching characteristics of an opticaldevice using a double-coupler silicon ring resonator in presence ofthe Kerr nonlinearity, thus obtaining the bistability behavior of theoutput port, the drop port and also inside the silicon microringresonator. It is shown that the bistability behavior depends on thecontrol of the input wavelength.KeywordsAll optical flip-flops, Kerr effect, microringresonator, optical bistability.
Keywords: All optical flip-flops, Kerr effect, microring resonator, optical bistability.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2145245 The Effect of Silicon on Cadmium Stress in Echium amoenum
Authors: Janet Amiri, Shekoofeh Entesari, Kourosh Delavar, Mahshid Saadatmand, Nasrin Aghamohammad Rafie
Abstract:
The beneficial effects of Si are mainly associated with its high deposition in plant tissue and enhancing their strength and rigidity. We investigated the role of Si against cadmium stress in (Echium C) in house green condition. When the seventh leaves was be appeared, plants were pretreated with five levels of Si: 0, 0.2, 0.5, 0.7and 1.5 mM Si (as sodium trisilicate, Na2(SiO2)3) and after that plants were treated with two levels of Cd (30 and 90 mM). The effects of Silicon and Cd were investigated on some physiological and biochemical parameters such as: lipid peroxidation (malondialdehyde (MDA) and other aldehydes, antocyanin and flavonoid content. Our results showed that Cd significantly increased MDA, other aldehydes, antocyanin and flavonoids content in Echium and silicon offset the negative effect and increased tolerance of Echium against Cd stress. From this results we concluded that Si increase membrane integrity and antioxidative ability in this plant against cd stress.Keywords: Silicon, Cadmium, Echium, MDA, antocyanin, flavonoid
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1932244 Micropower Composite Nanomaterials Based on Porous Silicon for Renewable Energy Sources
Authors: Alexey P. Antropov, Alexander V. Ragutkin, Nicolay A. Yashtulov
Abstract:
The original controlled technology for power active nanocomposite membrane-electrode assembly engineering on the basis of porous silicon is presented. The functional nanocomposites were studied by electron microscopy and cyclic voltammetry methods. The application possibility of the obtained nanocomposites as high performance renewable energy sources for micro-power electronic devices is demonstrated.Keywords: Cyclic voltammetry, electron microscopy, nanotechnology, platinum-palladium nanocomposites, porous silicon, power activity, renewable energy sources.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1224243 Effects of Silicon Oxide Filler Material and Fibre Orientation on Erosive Wear of GF/EP Composites
Authors: M. Bagci, H. Imrek, Omari M. Khalfan
Abstract:
Materials added to the matrix help improving operating properties of a composite. This experimental study has targeted to investigate this aim where Silicon Oxide particles were added to glass fibre and epoxy resin at an amount of 15% to the main material to obtain a sort of new composite material. Erosive wear behavior of epoxy-resin dipped composite materials reinforced with glass fibre and Silicon Oxide under three different impingement angles (30°, 60° and 90°), three different impact velocities (23, 34 and 53 m/s), two different angular Aluminum abrasive particle sizes (approximately 200 and 400 μm) and the fibre orientation of 45° (45/-45) were investigated. In the test results, erosion rates were obtained as functions of impingement angles, impact velocities, particle sizes and fibre orientation. Moreover, materials with addition of Silicon Oxide filler material exhibited lower wear as compared to neat materials with no added filler material. In addition, SEM views showing worn out surfaces of the test specimens were scrutinized.
Keywords: Erosive wear, fibre orientation, GF/EP, silicon oxide.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2562242 Selective Separation of Lead and Mercury Ions from Synthetic Produced Water via a Hollow Fiber Supported Liquid Membrane
Authors: S. Suren, U. Pancharoen
Abstract:
A double module hollow fiber supported liquid membrane (HFSLM) was applied to selectively separate lead and mercury ions from dilute synthetic produced water. The experiments were investigated on several variables: types of extractants (D2EHPA, Cyanex 471, Aliquat 336, and TOA), concentration of the selected extractant and operating time. The results clearly showed that the double module HFSLM could selectively separate Pb(II) and Hg(II) in feed solution at a very low concentration to less than the regulatory discharge limit of 0.2 and 0.005 mg/L issued by the Ministry of Industry and the Ministry of Natural Resource Environment, Thailand. The highest extractions of lead and mercury ions from synthetic produced water were 96% and 100% using 0.03 M D2EHPA and 0.06 M Aliquat 336 as the extractant for the first and second modules.Keywords: Hollow fiber, Lead ions, Liquid membrane, Mercury ions, Selective separation
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2334241 Dextran Modified Silicon Photonic Microring Resonator Sensors
Authors: Jessie Yiying Quah, Vivian Netto, Jack Sheng Kee, Eric Mouchel La Fosse, Mi Kyoung Park
Abstract:
We present a dextran modified silicon microring resonator sensor for high density antibody immobilization. An array of sensors consisting of three sensor rings and a reference ring was fabricated and its surface sensitivity and the limit of detection were obtained using polyelectrolyte multilayers. The mass sensitivity and the limit of detection of the fabricated sensor ring are 0.35 nm/ng mm-2 and 42.8 pg/mm2 in air, respectively. Dextran modified sensor surface was successfully prepared by covalent grafting of oxidized dextran on 3-aminopropyltriethoxysilane (APTES) modified silicon sensor surface. The antibody immobilization on hydrogel dextran matrix improves 40% compared to traditional antibody immobilization method via APTES and glutaraldehyde linkage.Keywords: Antibody immobilization, Dextran, Immunosensor, Label-free detection, Silicon micro-ring resonator
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2276240 Silicon-To-Silicon Anodic Bonding via Intermediate Borosilicate Layer for Passive Flow Control Valves
Authors: Luc Conti, Dimitry Dumont-Fillon, Harald van Lintel, Eric Chappel
Abstract:
Flow control valves comprise a silicon flexible membrane that deflects against a substrate, usually made of glass, containing pillars, an outlet hole, and anti-stiction features. However, there is a strong interest in using silicon instead of glass as substrate material, as it would simplify the process flow by allowing the use of well controlled anisotropic etching. Moreover, specific devices demanding a bending of the substrate would also benefit from the inherent outstanding mechanical strength of monocrystalline silicon. Unfortunately, direct Si-Si bonding is not easily achieved with highly structured wafers since residual stress may prevent the good adhesion between wafers. Using a thermoplastic polymer, such as parylene, as intermediate layer is not well adapted to this design as the wafer-to-wafer alignment is critical. An alternative anodic bonding method using an intermediate borosilicate layer has been successfully tested. This layer has been deposited onto the silicon substrate. The bonding recipe has been adapted to account for the presence of the SOI buried oxide and intermediate glass layer in order not to exceed the breakdown voltage. Flow control valves dedicated to infusion of viscous fluids at very high pressure have been made and characterized. The results are compared to previous data obtained using the standard anodic bonding method.
Keywords: Anodic bonding, evaporated glass, microfluidic valve, drug delivery.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 855239 Improvement of Short Channel Effects in Cylindrical Strained Silicon Nanowire Transistor
Authors: Fatemeh Karimi, Morteza Fathipour, Hamdam Ghanatian, Vala Fathipour
Abstract:
In this paper we investigate the electrical characteristics of a new structure of gate all around strained silicon nanowire field effect transistors (FETs) with dual dielectrics by changing the radius (RSiGe) of silicon-germanium (SiGe) wire and gate dielectric. Indeed the effect of high-κ dielectric on Field Induced Barrier Lowering (FIBL) has been studied. Due to the higher electron mobility in tensile strained silicon, the n-type FETs with strained silicon channel have better drain current compare with the pure Si one. In this structure gate dielectric divided in two parts, we have used high-κ dielectric near the source and low-κ dielectric near the drain to reduce the short channel effects. By this structure short channel effects such as FIBL will be reduced indeed by increasing the RSiGe, ID-VD characteristics will be improved. The leakage current and transfer characteristics, the threshold-voltage (Vt), the drain induced barrier height lowering (DIBL), are estimated with respect to, gate bias (VG), RSiGe and different gate dielectrics. For short channel effects, such as DIBL, gate all around strained silicon nanowire FET have similar characteristics with the pure Si one while dual dielectrics can improve short channel effects in this structure.Keywords: SNWT (silicon nanowire transistor), Tensile Strain, high-κ dielectric, Field Induced Barrier Lowering (FIBL), cylindricalnano wire (CW), drain induced barrier lowering (DIBL).
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2008238 Modeling of Silicon Solar Cell with Anti-Reflecting Coating
Authors: Ankita Gaur, Mouli Karmakar, Shyam
Abstract:
In this study, a silicon solar cell has been modeled and analyzed to enhance its performance by improving the optical properties using an anti-reflecting coating (ARC). The dynamic optical reflectance, transmittance along with the net transmissivity absorptivity product of each layer are assessed as per the diurnal variation of the angle of incidence using MATLAB 2019. The model is tested with various anti-reflective coatings and the performance has also been compared with uncoated cells. ARC improves the optical transmittance of the photon. Higher transmittance of ⁓96.57% with lowest reflectance of ⁓ 1.74% at 12.00 hours was obtained with MgF2 coated silicon cells. The electrical efficiency of the configured solar cell was evaluated for a composite climate of New Delhi, India, for all weather conditions. The annual electricity generation for anti-reflective coated and uncoated crystalline silicon PV Module was observed to be 103.14 KWh and 99.51 KWh, respectively.
Keywords: Anti-reflecting coating, electrical efficiency, reflectance, solar cell, transmittance.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 531237 Mathematical Modelling for Separation of Binary Aqueous Solution using Hollow Fiber Reverse Osmosis Module
Authors: Anil Kumar, S. Deswal
Abstract:
The mathematical equation for Separation of the binary aqueous solution is developed by using the Spiegler- Kedem theory. The characteristics of a B-9 hollow fibre module of Du Pont are determined by using these equations and their results are compared with the experimental results of Ohya et al. The agreement between these results is found to be excellent.Keywords: Binary aqueous solution, modeling, reverse osmosis module, Spiegler-Kedem theory.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1642236 Influence of Inertial Forces of Large Bearings Utilized in Wind Energy Assemblies
Authors: S. Barabas, F. Sarbu, B. Barabas, A. Fota
Abstract:
Main objective of this paper is to establish a link between inertial forces of the bearings used in construction of wind power plant and its behavior. Using bearings with lower inertial forces has the immediate effect of decreasing inertia rotor system, with significant results in increased energy efficiency, due to decreased friction forces between rollers and raceways. The F.E.M. analysis shows the appearance of uniform contact stress at the ends of the rollers, demonstrated the necessity of production of low mass bearings. Favorable results are expected in the economic field, by reducing material consumption and by increasing the durability of bearings. Using low mass bearings with hollow rollers instead of solid rollers has an impact on working temperature, on vibrations and noise which decrease. Implementation of types of hollow rollers of cylindrical tubular type, instead of expensive rollers with logarithmic profile, will bring significant inertial forces decrease with large benefits in behavior of wind power plant.Keywords: Inertial forces, Von Mises stress, hollow rollers.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2267235 Light Emission Enhancement of Silicon Nanocrystals by Gold Layer
Authors: R. Karmouch
Abstract:
A thin gold metal layer was deposited on the top of silicon oxide films containing embedded Si nanocrystals (Si-nc). The sample was annealed in a gas containing nitrogen, and subsequently characterized by photoluminescence. We obtained 3-fold enhancement of photon emission from the Si-nc embedded in silicon dioxide covered with a Gold layer as compared with an uncovered sample. We attribute this enhancement to the increase of the spontaneous emission rate caused by the coupling of the Si-nc emitters with the surface plasmons (SP). The evolution of PL emission with laser irradiated time was also collected from covered samples, and compared to that from uncovered samples. In an uncovered sample, the PL intensity decreases with time, approximately with two decay constants. Although the decrease of the initial PL intensity associated with the increase of sample temperature under CW pumping is still observed in samples covered with a gold layer, this film significantly contributes to reduce the permanent deterioration of the PL intensity. The resistance to degradation of light-emitting silicon nanocrystals can be increased by SP coupling to suppress the permanent deterioration. Controlling the permanent photodeterioration can allow to perform a reliable optical gain measurement.
Keywords: Photodeterioration, Silicon Nanocrystals, Ion Implantation, Photoluminescence, Surface Plasmons.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1868234 Topochemical Synthesis of Epitaxial Silicon Carbide on Silicon
Authors: Andrey V. Osipov, Sergey A. Kukushkin, Andrey V. Luk’yanov
Abstract:
A method is developed for the solid-phase synthesis of epitaxial layers when the substrate itself is involved into a topochemical reaction and the reaction product grows in the interior of substrate layer. It opens up new possibilities for the relaxation of the elastic energy due to the attraction of point defects formed during the topochemical reaction in anisotropic media. The presented method of silicon carbide (SiC) formation employs a topochemical reaction between the single-crystalline silicon (Si) substrate and gaseous carbon monoxide (CO). The corresponding theory of interaction of point dilatation centers in anisotropic crystals is developed. It is eliminated that the most advantageous location of the point defects is the direction (111) in crystals with cubic symmetry. The single-crystal SiC films with the thickness up to 200 nm have been grown on Si (111) substrates owing to the topochemical reaction with CO. Grown high-quality single-crystal SiC films do not contain misfit dislocations despite the huge lattice mismatch value of ~20%. Also the possibility of growing of thick wide-gap semiconductor films on these templates SiC/Si(111) and, accordingly, its integration into Si electronics, is demonstrated. Finally, the ab initio theory of SiC formation due to the topochemical reaction has been developed.
Keywords: Epitaxy, silicon carbide, topochemical reaction, wide-bandgap semiconductors.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1083233 Review of Affected Parameters on Flexural Behavior of Hollow Concrete Beams Reinforced by Steel/GFRP Rebars
Authors: Shahrad Ebrahimzadeh
Abstract:
Nowadays, the main efforts of the researchers aim to constantly evolve new, optimized, and efficient construction materials and methods related to reinforced concrete beams. Due to the fewer applied materials and higher structural efficiency than solid concrete beams with the same concrete area, hollow reinforced concrete beams (HRCBs) internally reinforced with steel rebars have been employed extensively for bridge structural members and high-rise buildings. Many experimental studies have been conducted to investigate the behavior of hollow beams subjected to bending loading and found that the structural performance of HRCBs is critically affected by many design parameters. While the proper design of the HRCBs demonstrated comparable behavior to solid sections, inappropriate design leads beams to be extremely prone to brittle failure. Another potential issue that needs further investigation is replacing steel bars with suitable materials due to their susceptibility to corrosion. Hence, to develop a reliable construction system, the application of Glass Fiber Reinforced Polymer (GFRP) bars as a non-corroding material has been utilized. Furthermore, this study aims to critically review the different design parameters that affect the flexural performance of the HRCBs and recognize the gaps of knowledge in the better design and more effective use of this construction system.
Keywords: Design parameters, experimental investigations, hollow reinforced concrete beams, steel, GFRP, flexural strength.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 260232 Impact of Process Variations on the Vertical Silicon Nanowire Tunneling FET (TFET)
Authors: Z. X. Chen, T. S. Phua, X. P. Wang, G. -Q. Lo, D. -L. Kwong
Abstract:
This paper presents device simulations on the vertical silicon nanowire tunneling FET (VSiNW TFET). Simulations show that a narrow nanowire and thin gate oxide is required for good performance, which is expected even for conventional MOSFETs. The gate length also needs to be more than the nanowire diameter to prevent short channel effects. An effect more unique to TFET is the need for abrupt source to channel junction, which is shown to improve the performance. The ambipolar effect suppression by reducing drain doping concentration is also explored and shown to have little or no effect on performance.
Keywords: Device simulation, MEDICI, tunneling FET (TFET), vertical silicon nanowire.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2638231 CMOS-Compatible Silicon Nanoplasmonics for On-Chip Integration
Authors: Shiyang Zhu, Guo-Qiang Lo, Dim-Lee Kwong
Abstract:
Although silicon photonic devices provide a significantly larger bandwidth and dissipate a substantially less power than the electronic devices, they suffer from a large size due to the fundamental diffraction limit and the weak optical response of Si. A potential solution is to exploit Si plasmonics, which may not only miniaturize the photonic device far beyond the diffraction limit, but also enhance the optical response in Si due to the electromagnetic field confinement. In this paper, we discuss and summarize the recently developed metal-insulator-Si-insulator-metal nanoplasmonic waveguide as well as various passive and active plasmonic components based on this waveguide, including coupler, bend, power splitter, ring resonator, MZI, modulator, detector, etc. All these plasmonic components are CMOS compatible and could be integrated with electronic and conventional dielectric photonic devices on the same SOI chip. More potential plasmonic devices as well as plasmonic nanocircuits with complex functionalities are also addressed.
Keywords: Silicon nanoplasmonics, Silicon nanophotonics, Onchip integration, CMOS
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1907230 Nano-Texturing of Single Crystalline Silicon via Cu-Catalyzed Chemical Etching
Authors: A. A. Abaker Omer, H. B. Mohamed Balh, W. Liu, A. Abas, J. Yu, S. Li, W. Ma, W. El Kolaly, Y. Y. Ahmed Abuker
Abstract:
We have discovered an important technical solution that could make new approaches in the processing of wet silicon etching, especially in the production of photovoltaic cells. During its inferior light-trapping and structural properties, the inverted pyramid structure outperforms the conventional pyramid textures and black silicone. The traditional pyramid textures and black silicon can only be accomplished with more advanced lithography, laser processing, etc. Importantly, our data demonstrate the feasibility of an inverted pyramidal structure of silicon via one-step Cu-catalyzed chemical etching (CCCE) in Cu (NO3)2/HF/H2O2/H2O solutions. The effects of etching time and reaction temperature on surface geometry and light trapping were systematically investigated. The conclusion shows that the inverted pyramid structure has ultra-low reflectivity of ~4.2% in the wavelength of 300~1000 nm; introduce of Cu particles can significantly accelerate the dissolution of the silicon wafer. The etching and the inverted pyramid structure formation mechanism are discussed. Inverted pyramid structure with outstanding anti-reflectivity includes useful applications throughout the manufacture of semi-conductive industry-compatible solar cells, and can have significant impacts on industry colleagues and populations.
Keywords: Cu-catalyzed chemical etching, inverted pyramid nanostructured, reflection, solar cells.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 875229 Numerical Modelling of Surface Waves Generated by Low Frequency Electromagnetic Field for Silicon Refinement Process
Authors: V. Geza, J. Vencels, G. Zageris, S. Pavlovs
Abstract:
One of the most perspective methods to produce SoG-Si is refinement via metallurgical route. The most critical part of this route is refinement from boron and phosphorus. Therefore, a new approach could address this problem. We propose an approach of creating surface waves on silicon melt’s surface in order to enlarge its area and accelerate removal of boron via chemical reactions and evaporation of phosphorus. A two dimensional numerical model is created which includes coupling of electromagnetic and fluid dynamic simulations with free surface dynamics. First results show behaviour similar to experimental results from literature.
Keywords: Numerical modelling, silicon refinement, surface waves, VOF method.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 810