Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 32451
Nano-Texturing of Single Crystalline Silicon via Cu-Catalyzed Chemical Etching

Authors: A. A. Abaker Omer, H. B. Mohamed Balh, W. Liu, A. Abas, J. Yu, S. Li, W. Ma, W. El Kolaly, Y. Y. Ahmed Abuker


We have discovered an important technical solution that could make new approaches in the processing of wet silicon etching, especially in the production of photovoltaic cells. During its inferior light-trapping and structural properties, the inverted pyramid structure outperforms the conventional pyramid textures and black silicone. The traditional pyramid textures and black silicon can only be accomplished with more advanced lithography, laser processing, etc. Importantly, our data demonstrate the feasibility of an inverted pyramidal structure of silicon via one-step Cu-catalyzed chemical etching (CCCE) in Cu (NO3)2/HF/H2O2/H2O solutions. The effects of etching time and reaction temperature on surface geometry and light trapping were systematically investigated. The conclusion shows that the inverted pyramid structure has ultra-low reflectivity of ~4.2% in the wavelength of 300~1000 nm; introduce of Cu particles can significantly accelerate the dissolution of the silicon wafer. The etching and the inverted pyramid structure formation mechanism are discussed. Inverted pyramid structure with outstanding anti-reflectivity includes useful applications throughout the manufacture of semi-conductive industry-compatible solar cells, and can have significant impacts on industry colleagues and populations.

Keywords: Cu-catalyzed chemical etching, inverted pyramid nanostructured, reflection, solar cells.

Digital Object Identifier (DOI):

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 635


[1] M. Moreno, D. Daineka, P.R.I. Cabarrocas, Plasma texturing for silicon solar cells: From pyramids to inverted pyramids-like structures, Solar Energy Materials & Solar Cells, 94 733-737.
[2] Y. Wang, L. Yang, Y. Liu, Z. Mei, W. Chen, J. Li, H. Liang, A. Kuznetsov, D. Xiaolong, Maskless inverted pyramid Texturization of silicon, Scientific Reports, 5 (2015) 10843.
[3] M. Gmbh, D. Munich, D.O. Berlin, Anisotropic Etching of Crystalline Silicon in Alkaline Solutions, 137 (1990) 3612-3626.
[4] P.K. Singh, R. Kumar, M. Lal, S.N. Singh, B.K. Das, Effectiveness of anisotropic etching of silicon in aqueous alkaline solutions, Solar Energy Materials & Solar Cells, 70 103-113.
[5] E. Vazsonyi, K.D. Clercq, R. Einhaus, E.V. Kerschaver, K. Said, J. Poortmans, J. Szlufcik, J. Nijs, Improved anisotropic etching process for industrial texturing of silicon solar cells, Solar Energy Materials & Solar Cells, 57 179-188.
[6] C.P.R. Liu X, Peters M, et al. Black silicon: fabrication methods, properties and solar energy applications
[J]. Energy Environ, (2014) 7(10):3223-3263.
[7] J. Oh, H.-C. Yuan, H.M. Branz, an 18.2%-efficient black-silicon solar cell achieved through control of carrier recombination in nanostructures, Nature Nanotechnology, 7 (2012) 743-748.
[8] T. Hirano, K. Nakade, S. Li, K. Kawai, K. Arima, Chemical etching of a semiconductor surface assisted by single sheets of reduced graphene oxide, Carbon, 127 681-687.
[9] J. Zhao, A. Wang, M.A. Green, High-efficiency PERL and PERT silicon solar cells on FZ and MCZ substrates, Solar Energy Materials & Solar Cells, 65 429-435.
[10] A. Mavrokefalos, S. Eon Han, S. Yerci, M. Branham, G. Chen, Efficient Light Trapping in Inverted Nanopyramid Thin Crystalline Silicon Membranes for Solar Cell Applications, 2012.
[11] B.A. Lu Y-T, Anti-reflection layers fabricated by a one-step copper-assisted chemical etching with inverted pyramidal structures intermediate between texturing and nanopore-type black silicon, Mater Chem A (2014) 2:12043–12052.
[12] J. Qiu, Y. Shang, X. Chen, S. Li, W. Ma, X. Wan, J. Yang, Y. Lei, Z. Chen, Enhanced efficiency of graphene-silicon Schottky junction solar cell through inverted pyramid arrays texturisation, Journal of Materials Science & Technology, 34 (2018) 2197-2204.
[13] M.A. Green, P. Campbell, Light trapping properties of pyramidally textured and grooved surfaces, in, 1987.
[14] Y.Y. Omer A A A, Sheng G, et al., Nano-Texturing of Silicon Wafers Via One-Step Copper-Assisted Chemical Etching
[J], Silicon, (2019).
[15] B. Jiang, M. Li, y. Liang, Y. Bai, D. Song, Y. Li, J. Luo, etching anisotropy mechanisms lead to the morphology-controlled silicon nanoporous structures by metal assisted chemical etching, 2016.
[16] M. Cao, S. Li, J. Deng, Y. Li, W. Ma, Y. Zhou, texturing a pyramid-like structure on a silicon surface via the synergetic effect of copper and Fe(III) in hydrofluoric acid solution, Applied Surface Science, 372 (2016) 36-41.
[17] X. Geng, Z. Qi, M. Li, B.K. Duan, L. Zhao, P.W. Bohn, Fabrication of antireflective layers on silicon using metal-assisted chemical etching with in situ deposition of silver nanoparticle catalysts, 103 (2012) 98-107.
[18] H. Zhang, J. Huang, Y. Wang, R. Liu, X. Huai, J. Jiang, C. Anfuso, Atomic force microscopy for two-dimensional materials: A tutorial review, Optics Communications, 406 (2018) 3-17.
[19] Z.P. Huang, N. Geyer, L.F. Liu, M.Y. Li, P. Zhong, Metal-assisted electrochemical etching of silicon, Nanotechnology, 21 465301.
[20] H. Zheng, M. Han, P. Zheng, L. Zheng, H. Qin, L. Deng, Porous silicon templates prepared by Cu-assisted chemical etching, Materials Letters, 118 146-149.
[21] Z. Huang, N. Geyer, P. Werner, J.d. Boor, U. Gösele, Metal-Assisted Chemical Etching of Silicon: A Review: In memory of Prof. Ulrich G? sele, 23 285-308.
[22] Y. Liu, T. Lai, H. Li, Y. Wang, Z. Mei, H. Liang, Z. Li, F. Zhang, W. Wang, A.Y. Kuznetsov, Nanostructure Formation and Passivation of Large-Area Black Silicon for Solar Cell Applications, Small, 8 1392-1397.
[23] B. Tian, X. Zheng, T.J. Kempa, Y. Fang, N. Yu, G. Yu, J. Huang, C.M. Lieber, Coaxial silicon nanowires as solar cells and nanoelectronic power sources, Nature, 449 885-889. S. P. Bingulac, “On the compatibility of adaptive controllers (Published Conference Proceedings style),” in Proc. 4th Annu. Allerton Conf. Circuits and Systems Theory, New York, 1994, pp. 8–16.