Search results for: soil chemical characteristics
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 4142

Search results for: soil chemical characteristics

3872 Determining G-γ Degradation Curve in Cohesive Soils by Dilatometer and in situ Seismic Tests

Authors: Ivandic Kreso, Spiranec Miljenko, Kavur Boris, Strelec Stjepan

Abstract:

This article discusses the possibility of using dilatometer tests (DMT) together with in situ seismic tests (MASW) in order to get the shape of G-g degradation curve in cohesive soils (clay, silty clay, silt, clayey silt and sandy silt). MASW test provides the small soil stiffness (Go from vs) at very small strains and DMT provides the stiffness of the soil at ‘work strains’ (MDMT). At different test locations, dilatometer shear stiffness of the soil has been determined by the theory of elasticity. Dilatometer shear stiffness has been compared with the theoretical G-g degradation curve in order to determine the typical range of shear deformation for different types of cohesive soil. The analysis also includes factors that influence the shape of the degradation curve (G-g) and dilatometer modulus (MDMT), such as the overconsolidation ratio (OCR), plasticity index (IP) and the vertical effective stress in the soil (svo'). Parametric study in this article defines the range of shear strain gDMT and GDMT/Go relation depending on the classification of a cohesive soil (clay, silty clay, clayey silt, silt and sandy silt), function of density (loose, medium dense and dense) and the stiffness of the soil (soft, medium hard and hard). The article illustrates the potential of using MASW and DMT to obtain G-g degradation curve in cohesive soils.

Keywords: Dilatometer testing, MASW testing, shear wave, soil stiffness, stiffness reduction, shear strain.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 850
3871 Experimental Investigations on the Influence of Properties of Jatropha Biodiesel on Performance, Combustion, and Emission Characteristics of a DI-CI Engine

Authors: P. V. Rao

Abstract:

The aim of the present research work is to investigate the influence of Jatropha biodiesel properties on various characteristics of a direct injection compression ignition engine. The experiments were performed at different engine operating regimes with the injection timing prescribed by the engine manufacturer for diesel fuel. The engine characteristics with Jatropha biodiesel were compared against those obtained using diesel fuel. From the results, it is observed that the biodiesel performance and emissions are lower than that of diesel fuel. However, the NOx emission of Jatropha biodiesel is more than that of diesel fuel. These high NOx emissions are due to the presence of unsaturated fatty acids and the advanced injection caused by the higher bulk modulus (or density) of Jatropha biodiesel Furthermore, the possibility for reduction of NOx emissions without expensive engine modifications (hardware) was investigated. Keeping this in mind, the Jatropha biodiesel was preheated. The experimental results show that the retarded injection timing is necessary when using Jatropha biodiesel in order to reduce NOx emission without worsening other engine characteristics. Results also indicate improved performance with the application of preheated biodiesel. The only penalty for using preheated biodiesel is the increase of smoke (soot).

Keywords: chemical properties, combustion, exhaust emissions, Jatropha biodiesel

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3304
3870 Nonlinear Response of Infinite Beams on a Multilayer Tensionless Extensible Geo-Synthetic: Reinforced Earth Beds under Moving Load

Authors: K. Karuppasamy

Abstract:

In this paper, analysis of an infinite beam resting on multilayer tensionless extensible geosynthetic reinforced granular fill-poor soil system overlying soft soil strata under moving load with constant velocity is presented. The beam is subjected to a concentrated load moving with constant velocity. The upper reinforced granular bed is modeled by a rough membrane embedded in Pasternak shear layer overlying a series of compressible nonlinear winkler springs representing the underlying the very poor soil. The multilayer tensionless extensible geosynthetic layer has been assumed to deform such that at interface the geosynthetic and the soil have some deformation. Nonlinear behaviour of granular fill and the very poor soil has been considered in the analysis by means of hyperbolic constitutive relationships. Governing differential equations of the soil foundation system have been obtained and solved with the help of appropriate boundary conditions. The solution has been obtained by employing finite difference method by means of Gauss-Siedal iterative scheme. Detailed parametric study has been conducted to study the influence of various parameters on the response of soil–foundation system under consideration by means of deflection and bending moment in the beam and tension mobilized in the geosynthetic layer. These parameters include magnitude of applied load, velocity of load, damping, ultimate resistance of poor soil and granular fill layer. Range of values of parameters has been considered as per Indian Railway conditions. This study clearly observed that the comparisons of multilayer tensionless extensible geosynthetic reinforcement with poor foundation soil and magnitude of applied load, relative compressibility of granular fill and ultimate resistance of poor soil has significant influence on the response of soil–foundation system.

Keywords: Infinite beams, multilayer tensionless extensible geosynthetic, granular layer, moving load, nonlinear behavior of poor soil.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2403
3869 Development of In Situ Permeability Test Using Constant Discharge Method for Sandy Soils

Authors: A. Rifa’i, Y. Takeshita, M. Komatsu

Abstract:

The post-rain puddles problem that occurs in the first yard of Prambanan Temple are often disturbing visitor activity. A poodle layer and a drainage system had ever built to avoid such a problem, but puddles still did not stop appearing after rain. Permeability parameter needs to be determined by using a simpler procedure to find exact method of solution. The instrument modelling was proposed according to the development of field permeability testing instrument. This experiment used a proposed Constant Discharge method. Constant Discharge method used a tube poured with constant water flow from unsaturated until saturated soil condition. Volumetric water content (θ) were monitored by soil moisture measurement device. The results were correlations between k and θ which were drawn by numerical approach from Van Genutchen model. Parameters θr optimum value obtained from the test was at very dry soil. Coefficient of permeability with a density of 19.8 kN/m3 for unsaturated conditions was in range of 3 x 10-6 cm/sec (Sr=68%) until 9.98 x 10-4 cm/sec (Sr=82%). The equipment and testing procedure developed in this research was quite effective, simple and easy to be implemented on determining field soil permeability coefficient value of sandy soil. Using constant discharge method in proposed permeability test, value of permeability coefficient under unsaturated condition can be obtained without establish soil water characteristic curve.

Keywords: Constant discharge method, in situ permeability test, sandy soil, unsaturated conditions.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3426
3868 Investigation of the Effect of Fine-Grained and Its Plastic Properties on Liquefaction Resistance of Sand

Authors: S. A. Naeini, M. Mortezaee

Abstract:

The purpose of this paper is to investigate the effect of fine grain content in soil and its plastic properties on soil liquefaction potential. For this purpose, the conditions for considering the fine grains effect and percentage of plastic fine on the liquefaction resistance of saturated sand presented by researchers has been investigated. Then, some comprehensive results of all the issues raised by some researchers are stated. From these investigations it was observed that by increasing the percentage of cohesive fine grains in the sandy soil (up to 20%), the maximum shear strength decreases and by adding more fine- grained percentage, the maximum shear strength of the resulting soil increases but never reaches the amount of clean sand.

Keywords: Fine-grained, liquefaction, plasticity, shear strength, sand.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 443
3867 Support Vector Regression for Retrieval of Soil Moisture Using Bistatic Scatterometer Data at X-Band

Authors: Dileep Kumar Gupta, Rajendra Prasad, Pradeep Kumar, Varun Narayan Mishra, Ajeet Kumar Vishwakarma, Prashant Kumar Srivastava

Abstract:

An approach was evaluated for the retrieval of soil moisture of bare soil surface using bistatic scatterometer data in the angular range of 200 to 700 at VV- and HH- polarization. The microwave data was acquired by specially designed X-band (10 GHz) bistatic scatterometer. The linear regression analysis was done between scattering coefficients and soil moisture content to select the suitable incidence angle for retrieval of soil moisture content. The 250 incidence angle was found more suitable. The support vector regression analysis was used to approximate the function described by the input output relationship between the scattering coefficient and corresponding measured values of the soil moisture content. The performance of support vector regression algorithm was evaluated by comparing the observed and the estimated soil moisture content by statistical performance indices %Bias, root mean squared error (RMSE) and Nash-Sutcliffe Efficiency (NSE). The values of %Bias, root mean squared error (RMSE) and Nash-Sutcliffe Efficiency (NSE) were found 2.9451, 1.0986 and 0.9214 respectively at HHpolarization. At VV- polarization, the values of %Bias, root mean squared error (RMSE) and Nash-Sutcliffe Efficiency (NSE) were found 3.6186, 0.9373 and 0.9428 respectively.

Keywords: Bistatic scatterometer, soil moisture, support vector regression, RMSE, %Bias, NSE.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3190
3866 An Experimental Study to Mitigate Swelling Pressure of Expansive Tabuk Shale, Saudi Arabia

Authors: A. A. Embaby, A. Abu Halawa, M. Ramadan

Abstract:

In Kingdom of Saudi Arabia, there are several areas where expansive soil exists in the form of variable-thicknesses layers in the developed regions. Severe distress to infrastructures can be caused by the development of heave and swelling pressure in this kind of expansive shale. Among the various techniques for expansive soil mitigation, the removal and replacement technique is very popular for lightly loaded structures and shallow foundations. This paper presents the result of an experimental study conducted for evaluating the effect of type and thickness of the cushion soils on mitigation of swelling characteristics of expanded shale. Seven undisturbed shale samples collected from Al Qadsiyah district, which is located in the Tabuk town north Kingdom of Saudi Arabia, are treated with two types of cushion coarse-grained sediments (CCS); sand and gravel. Each type is represented with three thicknesses, 22%, 33% and 44% in relation to the depth of the active zone. The test results indicated that the replacement of expansive shale by CCS reduces the swelling potential and pressure. It is found that the reduction in swelling depends on the type and thickness of CCS. The treatment by removing the original expansive shale and replacing it by cushion sand with 44% thickness reduced the swelling potential and pressure of about 53.29% and 62.78 %, respectively.

Keywords: Cushion coarse-grained sediments, expansive soil, Saudi Arabia, swelling pressure, Tabuk Shale.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1503
3865 Soil Resistivity Cut off Value and Concrete Pole Deployments in HV Transmission Mains

Authors: M. Nassereddine, J. Rizk, A. Hellany, M. Nagrial

Abstract:

The prologue of new High Voltage (HV) transmission mains into the community necessitates earthing design to ensure safety compliance of the system. Concrete poles are widely used within HV transmission mains; many retired transmission mains with timber poles are being replaced with concrete ones, green transmission mains are deploying concrete poles. The earthing arrangement of the concrete poles could have an impact on the earth grid impedance also on the input impedance of the system from the fault point of view. This paper endeavors to provide information on the soil resistivity of the area and the deployments of concrete poles. It introduce the cut off soil resistivity value ρSC, this value aid in determine the impact of deploying the concrete poles on the earthing system. Multiple cases were discussed in this paper.

Keywords: Soil Resistivity, HV Transmission Mains, Earthing, Safety.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2501
3864 Monitoring of Water Pollution and Its Consequences: An Overview

Authors: N. Singh, N. Sharma, J. K. Katnoria

Abstract:

Water a vital component for all living forms is derived from variety of sources, including surface water (rivers, lakes, reservoirs and ponds) and ground water (aquifers). Over the years of time, water bodies are subjected to human interference regularly resulting in deterioration of water quality. Therefore, pollution of water bodies has become matter of global concern. As the water quality closely relate to human health, water analysis before usage is of immense importance. Improper management of water bodies can cause serious problems in availability and quality of water. The quality of water may be described according to their physico-chemical and microbiological characteristics. For effective maintenance of water quality through appropriate control measures, continuous monitoring of metals, physico-chemical and biological parameter is essential for the establishment of baseline data for the water quality in any study area. The present study has focused on to explore the status of water pollution in various areas and to estimate the magnitude of its toxicity using different bioassay.

Keywords: Genotoxicity, Heavy metals, Mutagenicity, Physico-chemical analysis.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3529
3863 Effect of Azespirilium Bacteria in Reducing Nitrogen Fertilizers (Urea) and the Interaction of it with Stereptomyces Sp due the Biological Control on the Wheat (Triticum Asstivum) Sustinibelation Culture

Authors: Omid Alizadeh, Ali Parsaeimehr, Barmak.jaefary Hagheghy

Abstract:

An experiment was conducted in October 2008 due the ability replacement plant associate biofertilizers by chemical fertilizers and the qualifying rate of chemical N fertilizers at the moment of using this biofertilizers and the interaction of this biofertilizer on each other. This field experiment has been done in Persepolis (Throne of Jamshid) and arrange by using factorial with the basis of randomized complete block design, in three replication Azespirilium SP bacteria has been admixed with consistence 108 cfu/g and inoculated with seeds of wheat, The streptomyces SP has been used in amount of 550 gr/ha and concatenated on clay and for the qualifying range of chemical fertilizer 4 level of N chemical fertilizer from the source of urea (N0=0, N1=60, N2=120, N3=180) has been used in this experiment. The results indicated there were Significant differences between levels of Nitrogen fertilizer in the entire characteristic which has been measured in this experiment. The admixed Azespirilium SP showed significant differences between their levels in the characteristics such as No. of fertile ear, No. of grain per ear, grain yield, grain protein percentage, leaf area index and the agronomic fertilizer use efficiency. Due the interaction streptomyses with Azespirilium SP bacteria this actinomycet didn-t show any statistically significant differences between it levels.

Keywords: AzetobacterSP, AzespiriliumSP, StreptomycesSP

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1647
3862 Modeling Aggregation of Insoluble Phase in Reactors

Authors: A. Brener, B. Ismailov, G. Berdalieva

Abstract:

In the paper we submit the modification of kinetic Smoluchowski equation for binary aggregation applying to systems with chemical reactions of first and second orders in which the main product is insoluble. The goal of this work is to create theoretical foundation and engineering procedures for calculating the chemical apparatuses in the conditions of joint course of chemical reactions and processes of aggregation of insoluble dispersed phases which are formed in working zones of the reactor.

Keywords: Binary aggregation, Clusters, Chemical reactions, Insoluble phases.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1448
3861 Leaching of Mineral Nitrogen and Phosphate from Rhizosphere Soil Stressed by Drought and Intensive Rainfall

Authors: J. Elbl, J. K. Friedel, J. Záhora, L. Plošek, A. Kintl, J. Přichystalová, J. Hynšt, L. Dostálová, K. Zákoutská

Abstract:

This work presents the first results from the long-term experiment, which is focused on the impact of intensive rainfall and long period of drought on microbial activities in soil. Fifteen lysimeters were prepared in the area of our interest. This area is a protection zone of underground source of drinking water. These lysimeters were filed with topsoil and subsoil collected in this area and divided into two groups. These groups differ in fertilization and amount of water received during the growing season. Amount of microbial biomass and leaching of mineral nitrogen and phosphates were chosen as main indicators of microbial activities in soil. Content of mineral nitrogen and phosphates was measured in soil solution, which was collected from each lysimeters. Amount of microbial biomass was determined in soil samples that were taken from the lysimeters before and after the long period of drought and intensive rainfall.

Keywords: Mineral nitrogen, Phosphates, Microbial activities, Drought, Precipitation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2118
3860 Effect of Organic-waste Compost Addition on Leaching of Mineral Nitrogen from Arable Land and Plant Production

Authors: Jakub Elbl, Lukas Plošek, Antonín Kintl, Jaroslav Záhora, Jitka Přichystalová, Jaroslav Hynšt

Abstract:

Application of compost in agriculture is very desirable worldwide. In the Czech Republic, compost is the most often used to improve soil structure and increase the content of soil organic matter, but the effects of compost addition on the fate of mineral nitrogen are only scarcely described. This paper deals with possibility of using combined application of compost, mineral and organic fertilizers to reduce the leaching of mineral nitrogen from arable land. To demonstrate the effect of compost addition on leaching of mineral nitrogen, we performed the pot experiment. As a model crop, Lactuca sativa L. was used and cultivated for 35 days in climate chamber in thoroughly homogenized arable soil. Ten variants of the experiment were prepared; two control variants (pure arable soil and arable soil with added compost), four variants with different doses of mineral and organic fertilizers and four variants of the same doses of mineral and organic fertilizers with the addition of compos. The highest decrease of mineral nitrogen leaching was observed by the simultaneous applications of soluble humic substances and compost to soil samples, about 417% in comparison with the control variant. Application of these organic compounds also supported microbial activity and nitrogen immobilization documented by the highest soil respiration and by the highest value of the index of nitrogen availability. The production of plant biomass after this application was not the highest due to microbial competition for the nutrients in soil, but was 24% higher in comparison with the control variant. To support these promising results the experiment should be repeated in field conditions.

Keywords: Nitrogen, Compost, Salad, Arable land.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2036
3859 A Study on Leaching Behavior of Na, Ca and K Using Column Leach Test

Authors: Barman P.J, Kartha S A, Gupta S, Pradhan B.

Abstract:

Column leach test has been performed to examine the behavior of leaching of sodium, calcium and potassium in landfills. In the column leach apparatus, two different layers of contaminated and uncontaminated soils of different height ratios (ratio of depth of contaminated soil to the depth of uncontaminated soil) are taken. Water is poured from an overhead tank at a particular flowrate to the inlet of the soil column for a certain ponding depth over the contaminated soil. Subsequent infiltration causes leaching and the leachates are collected from the bottom of the column. The concentrations of Na, Ca and K in the leachate are measured using flame photometry. The experiments are further extended by changing the rates of flow from the overhead tank to the inlet of the column in achieving the same ponding depth. The experiments are performed for different scenarios in which the height ratios are altered and the variations of concentrations of Na, Ca, and K are observed. The study brings an estimation of leaching in landfill sites for different heights and precipitation intensity where a ponding depth is maintained over the landfill. It has been observed that the leaching behavior of Na, Ca, and K are not similar. Calcium exhibits highest amount of leaching compared to Sodium and Potassium under similar experimental conditions.

Keywords: Column leaching, flow rate, uncontaminated soil, contaminated soil, concentration, height ratio.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2298
3858 Using Micropiles to Improve the Anzali's Saturated Loose Silty Sand

Authors: S. A. Naeini, M. Hamidzadeh

Abstract:

Today, with the daily advancement of geotechnical engineering on soil improvement and modification of the physical properties and shear strength of soil, it is now possible to construct structures with high-volume and high service load on loose sandy soils. One of such methods is using micropiles, which are mostly used to control asymmetrical subsidence, increase bearing capacity, and prevent soil liquefaction. This study examined the improvement of Anzali's saturated loose silty sand using 192 micropiles with a length of 8 meters and diameter of 75 mm. Bandar-e Anzali is one of Iran's coastal populated cities which are located in a high-seismicity region. The effects of the insertion of micropiles on prevention of liquefaction and improvement of subsidence were examined through comparison of the results of Standard Penetration Test (SPT) and Plate Load Test (PLT) before and after implementation of the micropiles. The results show that the SPT values and the ultimate bearing capacity of silty sand increased after the implementation of the micropiles. Therefore, the installation of micropiles increases the strength of silty sand improving the resistance of soil against liquefaction.

Keywords: Soil improvement, silty sand, micropiles, SPT, PLT, strength.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1276
3857 Migration and Accumulation of Artificial Radionuclides in the System Water-Soil-Plants Depending on Polymers Applying

Authors: Anna H. Tadevosyan, Stepan K. Mayrapetyan, Michael P. Schellenberg, Laura M. Ghalachyan, Albert H. Hovsepyan, Khachatur S. Mayrapetyan

Abstract:

The possibility of radionuclides-related contamination of lands at agricultural holdings defines the necessity to apply special protective measures in plant growing. The aim of researches is to elucidate the influence of polymers applying on biological migration of man-made anthropogenic radionuclides 90Sr and 137Cs in the system water - soil – plant. The tests are being carried out under field conditions with and without application of polymers in root-inhabited media in more radioecological tension zone (with the radius of 7 km from the Armenian Nuclear Power Plant). The polymers on the base of K+, Caµ, KµCaµ ions were tested. Productivity of pepper depending on the presence and type of polymer material, content of artificial radionuclides in waters, soil and plant material has been determined. The character of different polymers influence on the artificial radionuclides migration and accumulation in the system water-soil-plant and accumulation in the plants has been cleared up.

Keywords: accumulation of artificial radionuclides, pepper, polymer, water-soil-plant system

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1605
3856 Foundation Retrofitting of Storage Tank under Seismic Load

Authors: Seyed Abolhasan Naeini, Mohammad Hossein Zade, E. Izadi, M. Hossein Zade

Abstract:

The different seismic behavior of liquid storage tanks rather than conventional structures makes their responses more complicated. Uplifting and excessive settlement due to liquid sloshing are the most frequent damages in cylindrical liquid tanks after shell bucking failure modes. As a matter of fact, uses of liquid storage tanks because of the simple construction on compact layer of soil as a foundation are very conventional, but in some cases need to retrofit are essential. The tank seismic behavior can be improved by modifying dynamic characteristic of tank with verifying seismic loads as well as retrofitting and improving base ground. This paper focuses on a typical steel tank on loose, medium and stiff sandy soil and describes an evaluation of displacement of the tank before and after retrofitting. The Abaqus program was selected for its ability to include shell and structural steel elements, soil-structure interaction, and geometrical nonlinearities and contact type elements. The result shows considerable decreasing in settlement and uplifting in the case of retrofitted tank. Also, by increasing shear strength parameter of soil, the performance of the liquid storage tank under the case of seismic load increased.

Keywords: Steel tank, soil-structure, sandy soil, seismic load.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1586
3855 Hydrological Characterization of a Watershed for Streamflow Prediction

Authors: Oseni Taiwo Amoo, Bloodless Dzwairo

Abstract:

In this paper, we extend the versatility and usefulness of GIS as a methodology for any river basin hydrologic characteristics analysis (HCA). The Gurara River basin located in North-Central Nigeria is presented in this study. It is an on-going research using spatial Digital Elevation Model (DEM) and Arc-Hydro tools to take inventory of the basin characteristics in order to predict water abstraction quantification on streamflow regime. One of the main concerns of hydrological modelling is the quantification of runoff from rainstorm events. In practice, the soil conservation service curve (SCS) method and the Conventional procedure called rational technique are still generally used these traditional hydrological lumped models convert statistical properties of rainfall in river basin to observed runoff and hydrograph. However, the models give little or no information about spatially dispersed information on rainfall and basin physical characteristics. Therefore, this paper synthesizes morphometric parameters in generating runoff. The expected results of the basin characteristics such as size, area, shape, slope of the watershed and stream distribution network analysis could be useful in estimating streamflow discharge. Water resources managers and irrigation farmers could utilize the tool for determining net return from available scarce water resources, where past data records are sparse for the aspect of land and climate.

Keywords: Hydrological characteristic, land and climate, runoff discharge, streamflow.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1423
3854 Displacement Fields in Footing-Sand Interactions under Cyclic Loading

Authors: S. Joseph Antony, Z. K. Jahanger

Abstract:

Soils are subjected to cyclic loading in situ in situations such as during earthquakes and in the compaction of pavements. Investigations on the local scale measurement of the displacements of the grain and failure patterns within the soil bed under the cyclic loading conditions are rather limited. In this paper, using the digital particle image velocimetry (DPIV), local scale displacement fields of a dense sand medium interacting with a rigid footing are measured under the plane-strain condition for two commonly used types of cyclic loading, and the quasi-static loading condition for the purposes of comparison. From the displacement measurements of the grains, the failure envelopes of the sand media are also presented. The results show that, the ultimate cyclic bearing capacity (qultcyc) occurred corresponding to a relatively higher settlement value when compared with that of under the quasi-static loading. For the sand media under the cyclic loading conditions considered here, the displacement fields in the soil media occurred more widely in the horizontal direction and less deeper along the vertical direction when compared with that of under the quasi-static loading. The 'dead zone' in the sand grains beneath the footing is identified for all types of the loading conditions studied here. These grain-scale characteristics have implications on the resulting bulk bearing capacity of the sand media in footing-sand interaction problems.

Keywords: Cyclic loading, DPIV, settlement, soil-structure interactions, strip footing.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 850
3853 The Effects of Four Organic Cropping Sequences on Soil Phosphorous Cycling and Arbuscular Mycorrhizal Fungi

Authors: R. J. Parham, J. D. Knight

Abstract:

Organic farmers across Saskatchewan face soil phosphorus (P) shortages. Due to the restriction on inputs in organic systems, farmers rely on crop rotation and naturally-occurring arbuscular mycorrhizal fungi (AMF) for plant P supply. Crop rotation is important for disease, pest, and weed management. Crops that are not colonized by AMF (non-mycorrhizal) can decrease colonization of a following crop. An experiment was performed to quantify soil P cycling in four cropping sequences under organic management and determine if mustard (non-mycorrhizal) was delaying the colonization of subsequent wheat. Soils from the four cropping sequences were measured for inorganic soil P (Pi), AMF spore density (SD), phospholipid fatty acid analysis (PLFA, for AMF biomarker counts), and alkaline phosphatase activity (ALPase, related to AMF metabolic activity). Plants were measured for AMF colonization and P content and uptake of above-ground biomass. A lack of difference in AMF activity indicated that mustard was not depressing colonization. Instead, AMF colonization was largely determined by crop type and crop rotation.

Keywords: Arbuscular mycorrhizal fungi, crop rotation, organic farming, phosphorous, soil microbiology.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2069
3852 Effect of Zinc Chloride Activation on Physicochemical Characteristics of Cassava Peel and Waste Bamboo Activated Carbon

Authors: Olayinka Omotosho, Anthony Amori

Abstract:

Cassava peels and bamboo waste materials discarded from construction are two sources of waste that could constitute serious menace where they exist in large quantities and inadequately handled. The study examined the physicochemical characteristics of activated carbon materials derived from cassava peels and bamboo waste materials discarded from construction site. Both materials were subjected to carbonization and chemical activation using zinc chloride. Results show that the chemical activation of the materials had a more effect on pore formation in cassava peels than in bamboo materials. Bamboo material exhibited a reverse trend for zinc and sulphate ion decontamination efficiencies as the value of zinc chloride impregnation varied unlike cassava peel carbon biomass which exhibited a more consistent result of decontamination efficiency for the seven contaminants tested. Although waste bamboo biomass exhibited higher adsorption intensity as indicated by values of decontamination for most of the contaminants tested, the cassava peel carbon biomass showed a more balanced adsorption level.

Keywords: Zinc chloride, cassava peels, activated carbon, bamboo waste, SEM.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1487
3851 Influence of Compactive Efforts on Cement- Bagasse Ash Treatment of Expansive Black Cotton Soil

Authors: Moses, G, Osinubi, K. J.

Abstract:

A laboratory study on the influence of compactive effort on expansive black cotton specimens treated with up to 8% ordinary Portland cement (OPC) admixed with up to 8% bagasse ash (BA) by dry weight of soil and compacted using the energies of the standard Proctor (SP), West African Standard (WAS) or “intermediate” and modified Proctor (MP) were undertaken. The expansive black cotton soil was classified as A-7-6 (16) or CL using the American Association of Highway and Transportation Officials (AASHTO) and Unified Soil Classification System (USCS), respectively. The 7day unconfined compressive strength (UCS) values of the natural soil for SP, WAS and MP compactive efforts are 286, 401 and 515kN/m2 respectively, while peak values of 1019, 1328 and 1420kN/m2 recorded at 8% OPC/ 6% BA, 8% OPC/ 2% BA and 6% OPC/ 4% BA treatments, respectively were less than the UCS value of 1710kN/m2 conventionally used as criterion for adequate cement stabilization. The soaked California bearing ratio (CBR) values of the OPC/BA stabilized soil increased with higher energy level from 2, 4 and 10% for the natural soil to Peak values of 55, 18 and 8% were recorded at 8% OPC/4% BA 8% OPC/2% BA and 8% OPC/4% BA, treatments when SP, WAS and MP compactive effort were used, respectively. The durability of specimens was determined by immersion in water. Soils treatment at 8% OPC/ 4% BA blend gave a value of 50% resistance to loss in strength value which is acceptable because of the harsh test condition of 7 days soaking period specimens were subjected instead of the 4 days soaking period that specified a minimum resistance to loss in strength of 80%. Finally An optimal blend of is 8% OPC/ 4% BA is recommended for treatment of expansive black cotton soil for use as a sub-base material.

Keywords: Bagasse ash, California bearing ratio, Compaction, Durability, Ordinary Portland cement, Unconfined compressive strength.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3529
3850 Characterization of Banana (Musa spp.) Pseudo-Stem and Fruit-Bunch-Stem as a Potential Renewable Energy Resource

Authors: Nurhayati Abdullah, Fauziah Sulaiman, Muhamad Azman Miskam, Rahmad Mohd Taib

Abstract:

Banana pseudo-stem and fruit-bunch-stem are agricultural residues that can be used for conversion to bio-char, biooil, and gases by using thermochemical process. The aim of this work is to characterize banana pseudo-stem and banana fruit-bunch-stem through proximate analysis, elemental analysis, chemical analysis, thermo-gravimetric analysis, and heating calorific value. The ash contents of the banana pseudo-stem and banana fruit-bunch-stem are 11.0 mf wt.% and 20.6 mf wt.%; while the carbon content of banana pseudo-stem and fruit-bunch-stem are 37.9 mf wt.% and 35.58 mf wt.% respectively. The molecular formulas for banana stem and banana fruit-bunch-stem are C24H33NO26 and C19H29NO33 respectively. The measured higher heating values of banana pseudostem and banana fruit-bunch-stem are 15.5MJ/kg and 12.7 MJ/kg respectively. By chemical analysis, the lignin, cellulose, and hemicellulose contents in the samples will also be presented. The feasibility of the banana wastes to be a feedstock for thermochemical process in comparison with other biomass will be discussed in this paper.

Keywords: Banana Waste, Biomass, Renewable Energy, Thermo-chemical Characteristics.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 8719
3849 Total and Leachable Concentration of Trace Elements in Soil towards Human Health Risk, Related with Coal Mine in Jorong, South Kalimantan, Indonesia

Authors: Arie Pujiwati, Kengo Nakamura, Noriaki Watanabe, Takeshi Komai

Abstract:

Coal mining is well known to cause considerable environmental impacts, including trace element contamination of soil. This study aimed to assess the trace element (As, Cd, Co, Cu, Ni, Pb, Sb, and Zn) contamination of soil in the vicinity of coal mining activities, using the case study of Asam-asam River basin, South Kalimantan, Indonesia, and to assess the human health risk, incorporating total and bioavailable (water-leachable and acid-leachable) concentrations. The results show the enrichment of As and Co in soil, surpassing the background soil value. Contamination was evaluated based on the index of geo-accumulation, Igeo and the pollution index, PI. Igeo values showed that the soil was generally uncontaminated (Igeo ≤ 0), except for elevated As and Co. Mean PI for Ni and Cu indicated slight contamination. Regarding the assessment of health risks, the Hazard Index, HI showed adverse risks (HI > 1) for Ni, Co, and As. Further, Ni and As were found to pose unacceptable carcinogenic risk (risk > 1.10-5). Farming, settlement, and plantation were found to present greater risk than coal mines. These results show that coal mining activity in the study area contaminates the soils by particular elements and may pose potential human health risk in its surrounding area. This study is important for setting appropriate countermeasure actions and improving basic coal mining management in Indonesia.

Keywords: Coal mine, risk, soil, trace elements.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1142
3848 Study and Evaluation of Added Stresses under Foundation due to Adjacent Structure

Authors: Alireza M. goltabar, Issa shooshpasha , Reza Shamstabar kami , Mostafa Habibi

Abstract:

Added stresses due to adjacent structure should be considered in foundation design and stress control in soil under the structure. This case is considered less than other cases in design and calculation whereas stresses in implementation are greater than analytical stress. Structure load are transmitted to earth by foundation and role of foundation is propagation of load on the continuous and half extreme soil. This act cause that, present stresses lessen to allowable strength of soil. Some researchers such as Boussinesq and westergaurd by using of some assumption studied on this issue, theorically. Target of this paper is study and evaluation of added stresses under structure due to adjacent structure. For this purpose, by using of assumption, theoric relation and numeral methods, effects of adjacent structure with 4 to 10 storeys on the main structure with 4 storeys are studied and effect of parameters and sensitivity of them are evaluated.

Keywords: stress, soil, adjacent structure, foundation, loading.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1429
3847 Effect of Subsequent Drying and Wetting on the Small Strain Shear Modulus of Unsaturated Soils

Authors: A. Khosravi, S. Ghadirian, J. S. McCartney

Abstract:

Evaluation of the seismic-induced settlement of an unsaturated soil layer depends on several variables, among which the small strain shear modulus, Gmax, and soil’s state of stress have been demonstrated to be of particular significance. Recent interpretation of trends in Gmax revealed considerable effects of the degree of saturation and hydraulic hysteresis on the shear stiffness of soils in unsaturated states. Accordingly, the soil layer is expected to experience different settlement behaviors depending on the soil saturation and seasonal weathering conditions. In this study, a semi-empirical formulation was adapted to extend an existing Gmax model to infer hysteretic effects along different paths of the SWRC including scanning curves. The suitability of the proposed approach is validated against experimental results from a suction-controlled resonant column test and from data reported in literature. The model was observed to follow the experimental data along different paths of the SWRC, and showed a slight hysteresis in shear modulus along the scanning curves.

Keywords: Hydraulic hysteresis, Scanning path, Small strain shear modulus, Unsaturated soil.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1536
3846 The Effect of Treated Waste-Water on Compaction and Compression of Fine Soil

Authors: M. Attom, F. Abed, M. Elemam, M. Nazal, N. ElMessalami

Abstract:

—The main objective of this paper is to study the effect of treated waste-water (TWW) on the compaction and compressibility properties of fine soil. Two types of fine soils (clayey soils) were selected for this study and classified as CH soil and Cl type of soil. Compaction and compressibility properties such as optimum water content, maximum dry unit weight, consolidation index and swell index, maximum past pressure and volume change were evaluated using both tap and treated waste water. It was found that the use of treated waste water affects all of these properties. The maximum dry unit weight increased for both soils and the optimum water content decreased as much as 13.6% for highly plastic soil. The significant effect was observed in swell index and swelling pressure of the soils. The swell indexed decreased by as much as 42% and 33% for highly plastic and low plastic soils, respectively, when TWW is used. Additionally, the swelling pressure decreased by as much as 16% for both soil types. The result of this research pointed out that the use of treated waste water has a positive effect on compaction and compression properties of clay soil and promise for potential use of this water in engineering applications. Keywords—Consolidation, proctor compaction, swell index, treated waste-water, volume change.

Keywords: Consolidation, proctor compaction, swell index, treated waste-water, volume change.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1605
3845 Impact of Long Term Application of Municipal Solid Waste on Physicochemical and Microbial Parameters and Heavy Metal Distribution in Soils in Accordance to Its Agricultural Uses

Authors: Rinku Dhanker, Suman Chaudhary, Tanvi Bhatia, Sneh Goyal

Abstract:

Municipal Solid Waste (MSW), being a rich source of organic materials, can be used for agricultural applications as an important source of nutrients for soil and plants. This is also an alternative beneficial management practice for MSW generated in developing countries. In the present study, MSW treated soil samples from last four to six years at farmer’s field in Rohtak and Gurgaon states (Haryana, India) were collected. The samples were analyzed for all-important agricultural parameters and compared with the control untreated soil samples. The treated soil at farmer’s field showed increase in total N by 48 to 68%, P by 45.7 to 51.3%, and K by 60 to 67% compared to untreated soil samples. Application of sewage sludge at different sites led to increase in microbial biomass C by 60 to 68% compared to untreated soil. There was significant increase in total Cu, Cr, Ni, Fe, Pb, and Zn in all sewage sludge amended soil samples; however, concentration of all the metals were still below the current permitted (EU) limits. To study the adverse effect of heavy metals accumulation on various soil microbial activities, the sewage sludge samples (from wastewater treatment plant at Gurgaon) were artificially contaminated with heavy metal concentration above the EU limits. They were then applied to soil samples with different rates (0.5 to 4.0%) and incubated for 90 days under laboratory conditions. The samples were drawn at different intervals and analyzed for various parameters like pH, EC, total N, P, K, microbial biomass C, carbon mineralization, and diethylenetriaminepentaacetic acid (DTPA) exactable heavy metals. The results were compared to the uncontaminated sewage sludge. The increasing level of sewage sludge from 0.5 to 4% led to build of organic C and total N, P and K content at the early stages of incubation. But, organic C was decreased after 90 days because of decomposition of organic matter. Biomass production was significantly increased in both contaminated and uncontaminated sewage soil samples, but also led to slight increases in metal accumulation and their bioavailability in soil. The maximum metal concentrations were found in treatment with 4% of contaminated sewage sludge amendment.

Keywords: Heavy metals, municipal sewage sludge, sustainable agriculture, soil fertility, quality.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1270
3844 Dry Binder Mixing of Field Trial Investigation Using Soil Mix Technology: A Case Study on Contaminated Site Soil

Authors: M. Allagoa, A. Al-Tabbaa

Abstract:

The study explores the use of binders and additives, such as Portland cement, pulverized fuel ash, ground granulated blast furnace slag, and MgO, to reduce the concentration and leachability of pollutants in contaminated site soils. The research investigates their effectiveness and associated risks of binders, with a focus on Total Heavy Metals (THM) and Total Petroleum Hydrocarbon (TPH). The goal of this research is to evaluate the performance and effectiveness of binders and additives in remediating soil pollutants. The study aims to assess the suitability of the mixtures for ground improvement purposes, determine the optimal dosage, and investigate the associated risks. The research utilizes physical (unconfined compressive strength) and chemical tests (batch leachability test) to assess the efficacy of the binders and additives. A completely randomized design one-way ANOVA is used to determine the significance within mix binders of THM. The study also employs incremental lifetime cancer risk (ILCR) assessments and other indices to evaluate the associated risks. The study finds that Ground Granulated Blast Furnace Slag (GGBS): MgO is the most effective binder for remediation, particularly when using low dosages of MgO combined with higher dosages of GGBS binders on TPH. The results indicate that binders and additives can encapsulate and immobilize pollutants, thereby reducing their leachability and toxicity. The mean unconfined compressive strength of the soil ranges from 285.0-320.5 kPa, while THM levels with a combination of Ground granulated blast furnace slag and Magnesium oxide, Portland cement and Pulverised fuel ash were less than 10 µg/l. Portland cement was below 1 µg/l. The ILCR ranged from 6.77E-02 - 2.65E-01 and 5.444E-01 - 3.20 E+00, with the highest values observed under extreme conditions. The hazard index (HI), risk allowable daily dose intake (ADI), and risk chronic daily intake (CDI) were all less than 1 for the THM. The study identifies MgO as the best additive for use in soil remediation.

Keywords: Risk daily dose intake, risk chronic daily intake, incremental lifetime cancer risk, ILCR, novel binders, additives binders, hazard index.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 129
3843 Chemical Composition, Petrology and P-T Conditions of Ti-Mg-Biotites within Syenitic Rocks from the Lar Igneous Suite, East of Iran

Authors: Sasan Ghafaribijar, Javad Hakimi, Mohsen Arvin, Peyman Tahernezhad

Abstract:

The Lar Igneous Suite (LIS), east of Iran, is part of post collisional alkaline magmatism related to Late Cretaceous- mid Eocene Sistan suture zone. The suite consists of a wide variety of igneous rocks, from volcanic to intrusive and hypabissal rocks such as tuffs, trachyte, monzonite, syenites and lamprophyres. Syenitic rocks which mainly occur in a giant ring dike and stocks, are shoshonitic to potassic-ultrapotassic (K2O/Na2O > 2 wt.%; MgO > 3 wt.%; K2O > 3 wt.%) in composition and are also associated with Cu-Mo mineralization. In this study, chemical composition of biotites within the Lar syenites (LS) is determined by electron microprobe analysis. The results show that LS biotites are Ti-Mg-biotites (phlogopite) which contain relatively high Ti and Mg, and low Fe concentrations. The Mg/(Fe2++ Mg) ratio in these biotites range between 0.56 and 0.73 that represent their transitionally chemical evolution. TiO2 content in these biotites is high and in the range of 3.0-5.4 wt.%. These chemical characteristics indicate that the LS biotites are primary and have been crystallized directly from magma. The investigations also demonstrate that the LS biotites have crystallized from a magma of orogenic nature. Temperature and pressure are the most significant factors controlling Mg and Ti content in the LS biotites, respectively. The results show that the LS biotites crystallized at temperatures (T) between 800 to 842 °C and pressures (P) between 0.99 to 1.44 kbar. These conditions are indicative of a crystallization depth of 3.26-4.74 km.

Keywords: Sistan suture zone, Lar Igneous Suite, Zahedan, syenite, biotite.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 663