@article{(Open Science Index):https://publications.waset.org/pdf/16536,
	  title     = {Influence of Compactive Efforts on Cement- Bagasse Ash Treatment of Expansive Black Cotton Soil},
	  author    = {Moses and  G and  Osinubi and  K. J.},
	  country	= {},
	  institution	= {},
	  abstract     = {A laboratory study on the influence of compactive
effort on expansive black cotton specimens treated with up to 8%
ordinary Portland cement (OPC) admixed with up to 8% bagasse ash
(BA) by dry weight of soil and compacted using the energies of the
standard Proctor (SP), West African Standard (WAS) or
“intermediate” and modified Proctor (MP) were undertaken. The
expansive black cotton soil was classified as A-7-6 (16) or CL using
the American Association of Highway and Transportation Officials
(AASHTO) and Unified Soil Classification System (USCS),
respectively. The 7day unconfined compressive strength (UCS)
values of the natural soil for SP, WAS and MP compactive efforts are
286, 401 and 515kN/m2 respectively, while peak values of 1019,
1328 and 1420kN/m2 recorded at 8% OPC/ 6% BA, 8% OPC/ 2% BA
and 6% OPC/ 4% BA treatments, respectively were less than the
UCS value of 1710kN/m2 conventionally used as criterion for
adequate cement stabilization. The soaked California bearing ratio
(CBR) values of the OPC/BA stabilized soil increased with higher
energy level from 2, 4 and 10% for the natural soil to Peak values of
55, 18 and 8% were recorded at 8% OPC/4% BA 8% OPC/2% BA
and 8% OPC/4% BA, treatments when SP, WAS and MP compactive
effort were used, respectively. The durability of specimens was
determined by immersion in water. Soils treatment at 8% OPC/ 4%
BA blend gave a value of 50% resistance to loss in strength value
which is acceptable because of the harsh test condition of 7 days
soaking period specimens were subjected instead of the 4 days
soaking period that specified a minimum resistance to loss in strength
of 80%. Finally An optimal blend of is 8% OPC/ 4% BA is
recommended for treatment of expansive black cotton soil for use as
a sub-base material.
},
	    journal   = {International Journal of Civil and Environmental Engineering},
	  volume    = {7},
	  number    = {7},
	  year      = {2013},
	  pages     = {566 - 573},
	  ee        = {https://publications.waset.org/pdf/16536},
	  url   	= {https://publications.waset.org/vol/79},
	  bibsource = {https://publications.waset.org/},
	  issn  	= {eISSN: 1307-6892},
	  publisher = {World Academy of Science, Engineering and Technology},
	  index 	= {Open Science Index 79, 2013},
	}