Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 1255

Search results for: strength.

1255 Experimental Study of Strength Recovery from Residual Strength on Kaolin Clay

Authors: Deepak R. Bhat, Netra P. Bhandery, Ryuichi Yatabe

Abstract:

Strength recovery effect from the residual-state of shear is not well address in scientific literature. Torsional ring shear strength recovery tests on kaolin clay using rest periods up to 30 days are performed at the effective normal stress 100kN/m2. Test results shows that recovered strength measured in the laboratory is slightly noticeable after rest period of 3 days, but recovered strength lost after very small shear displacement. This paper mainly focused on the strength recovery phenomenon from the residual strength of kaolin clay based on torsional ring shear test results. Mechanisms of recovered strength are also discussed.

Keywords: Kaolin clay, Residual strength, Strength recovery, Torsional ring shear test.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2109
1254 Evaluation of Hand Grip Strength and EMG Signal on Visual Reaction

Authors: Sung-Wook Shin, Sung-Taek Chung

Abstract:

Hand grip strength has been utilized as an indicator to evaluate the motor ability of hands, responsible for performing multiple body functions. It is, however, difficult to evaluate other factors (other than hand muscular strength) utilizing the hand grip strength only. In this study, we analyzed the motor ability of hands using EMG and the hand grip strength, simultaneously in order to evaluate concentration, muscular strength reaction time, instantaneous muscular strength change, and agility in response to visual reaction. In results, the average time (and their standard deviations) of muscular strength reaction EMG signal and hand grip strength was found to be 209.6 ± 56.2 ms and 354.3 ± 54.6 ms, respectively. In addition, the onset time which represents acceleration time to reach 90% of maximum hand grip strength, was 382.9 ± 129.9 ms.

Keywords: Hand grip strength, EMG, visual reaction, endurance.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2720
1253 Evaluation of Applicability of High Strength Stirrup for Prestressed Concrete Members

Authors: J.-Y. Lee, H.-S. Lim, S.-E. Kim

Abstract:

Recently, the use of high-strength materials is increasing as the construction of large structures and high-rise structures increases. This paper presents an analysis of the shear behavior of prestressed concrete members with various types of materials by simulating a finite element (FE) analysis. The analytical results indicated that the shear strength and shear failure mode were strongly influenced by not only the shear reinforcement ratio but also the yield strength of shear reinforcement and the compressive strength of concrete. Though the yield strength of shear reinforcement increased the shear strength of prestressed concrete members, there was a limit to the increase in strength because of the change of shear failure modes. According to the results of FE analysis on various parameters, the maximum yield strength of the steel stirrup that can be applied to prestressed concrete members was about 860 MPa.

Keywords: PSC members, shear failure mode, high strength stirrups, high strength concrete, shear behavior.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 721
1252 Diagonal Crack Width of RC Members with High Strength Materials

Authors: J. Y. Lee, H. S. Lim, S. H. Yoon

Abstract:

This paper presents an analysis of the diagonal crack widths of RC members with various types of materials by simulating a compatibility-aided truss model. The analytical results indicated that the diagonal crack width was influenced by not only the shear reinforcement ratio but also the yield strength of shear reinforcement and the compressive strength of concrete. The yield strength of shear reinforcement and the compressive strength of concrete decreased the diagonal shear crack width of RC members for the same shear force because of the change of shear failure modes. However, regarding the maximum shear crack width at shear failure, the shear crack width of the beam with high strength materials was greater than that of the beam with normal strength materials.

Keywords: Diagonal crack width, high strength stirrups, high strength concrete, RC members, shear behavior.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 975
1251 Prediction of Compressive Strength Using Artificial Neural Network

Authors: Vijay Pal Singh, Yogesh Chandra Kotiyal

Abstract:

Structures are a combination of various load carrying members which transfer the loads to the foundation from the superstructure safely. At the design stage, the loading of the structure is defined and appropriate material choices are made based upon their properties, mainly related to strength. The strength of materials kept on reducing with time because of many factors like environmental exposure and deformation caused by unpredictable external loads. Hence, to predict the strength of materials used in structures, various techniques are used. Among these techniques, Non-destructive techniques (NDT) are the one that can be used to predict the strength without damaging the structure. In the present study, the compressive strength of concrete has been predicted using Artificial Neural Network (ANN). The predicted strength was compared with the experimentally obtained actual compressive strength of concrete and equations were developed for different models. A good co-relation has been obtained between the predicted strength by these models and experimental values. Further, the co-relation has been developed using two NDT techniques for prediction of strength by regression analysis. It was found that the percentage error has been reduced between the predicted strength by using combined techniques in place of single techniques.

Keywords: Rebound, ultra-sonic pulse, penetration, ANN, NDT, regression.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4044
1250 Recurring as a Means of Partial Strength Recovery of Concrete Subjected to Elevated Temperatures

Authors: Shree Laxmi Prashant, Subhash C. Yaragal, K. S. Babu Narayan

Abstract:

Concrete is found to undergo degradation when subjected to elevated temperatures and loose substantial amount of its strength. The loss of strength in concrete is mainly attributed to decomposition of C-S-H and release of physically and chemically bound water, which begins when the exposure temperature exceeds 100°C. When such a concrete comes in contact with moisture, the cement paste is found rehydrate and considerable amount of strength lost is found to recover. This paper presents results of an experimental program carried out to investigate the effect of recuring on strength gain of OPC concrete specimens subjected to elevated temperatures from 200°C to 800°C, which were subjected to retention time of two hours and four hours at the designated temperature. Strength recoveries for concrete subjected to 7 designated elevated temperatures are compared. It is found that the efficacy of recuring as a measure of strength recovery reduces with increase in exposure temperature.

Keywords: Elevated Temperature, Recuring, Strength Recovery, Compressive strength.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2096
1249 Effect of One-Handed Pushing and Puling Strength at Different Handle Heights in Vertical Direction

Authors: Tarik H. Badi, Amer A. Boushaala

Abstract:

The purpose of this study was to measure the maximal isometric strength and to investigate the effects of different handleheights and elbow angles with respect to Mid. sagittal plane on the pushing and pulling strength in vertical direction. Eight male subjects performed a series of static strength measurement for each subject. The highest isometric strength was found in pulling at shoulder height (S.H.) (Mean = 60.29 lb., SD = 16.78 lb.) and the lowest isometric strength was found also in pulling at elbow height (E.H.) (Mean = 33.06 lb., SD = 6.56 lb.). Although the isometric strengths were higher at S.H than at E.H. for both activities, the maximal isometric strengths were compared statistically. ANOVA was performed. The results of the experiment revealed that there was a significant different between handle heights. However, there were no significant different between angles and activities, also no correlation between grip strength and activities.

Keywords: Pushing and pulling, one arm, vertical direction, isometric strength.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2840
1248 Effect of Fire on Structural Behavior of Normal and High Strength Concrete Beams

Authors: Alaa I. Arafa, Hemdan O. A. Said. Marwa A. M. Ali

Abstract:

This paper investigates and evaluates experimentally the structural behavior of high strength concrete (HSC) beams under fire and compares it with that of Normal strength concrete (NSC) beams. The main investigated parameters are: concrete compressive strength (300 or 600 kg/cm2); the concrete cover thickness (3 or 5 cm); the degree of temperature (room temperature or 600 oC); the type of cooling (air or water); and the fire exposure time (3 or 5 hours). Test results showed that the concrete compressive strength decreases significantly as the exposure time to fire increases.

Keywords: Experimental, fire, high strength concrete beams, monotonic loading.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 601
1247 Effect of Steel Fibers on Flexural Behavior of Normal and High Strength Concrete

Authors: K. M. Aldossari, W. A. Elsaigh, M. J. Shannag

Abstract:

An experimental study was conducted to investigate the effect of hooked-end steel fibers on the flexural behavior of normal and high strength concrete matrices. The fibers content appropriate for the concrete matrices investigated was also determined based on flexural tests on standard prisms. Parameters investigated include: matrix compressive strength ranging from 45 MPa to 70 MPa, corresponding to normal and high strength concrete matrices respectively; fibers volume fraction including 0, 0.5%, 0.76% and 1%, equivalent to 0, 40, 60, and 80 kg/m3 of hooked-end steel fibers respectively. Test results indicated that flexural strength and toughness of normal and high strength concrete matrices were significantly improved with the increase in the fibers content added; whereas a slight improvement in compressive strength was observed for the same matrices. Furthermore, the test results indicated that the effect of increasing the fibers content was more pronounced on increasing the flexural strength of high strength concrete than that of normal concrete.

Keywords: Concrete, flexural strength, toughness, steel fibers.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1598
1246 A Study on Behaviour of Normal Strength Concrete and High Strength Concrete Subjected to Elevated Temperatures

Authors: C. B. K.Rao, Rooban Kumar

Abstract:

Cement concrete is a complex mixture of different materials. Behaviour of concrete depends on its mix proportions and constituents when it is subjected to elevated temperatures. Principal effects due to elevated temperatures are loss in compressive strength, loss in weight or mass, change in colour and spall of concrete. The experimental results of normal concrete and high strength concrete subjected elevated temperatures at 200°C, 400°C, 600°C, and 800°C and different cooling regimes viz. air cooling, water quenching on different grade of concrete are reported in this paper.

Keywords: High strength concrete, Normal strength concrete, Elevated Temperature, Loss of mass.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3422
1245 The Effect of Screw Parameters on Pullout Strength of Screw Fixation in Cervical Spine

Authors: S. Ritddech, P. Aroonjarattham, K. Aroonjarattham

Abstract:

The pullout strength had an effect on the stability of plate screw fixation when inserted in the cervical spine. Nine different titanium alloy bone screws were used to test the pullout strength through finite element analysis. The result showed that the Moss Miami I can bear the highest pullout force at 1,075 N, which causes the maximum von Mises stress at 858.87 MPa, a value over the yield strength of titanium. The bone screw should have large outer diameter, core diameter and proximal root radius to increase the pullout strength.

Keywords: Pullout strength, Screw parameter, Cervical spine, Finite element analysis.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2880
1244 Effect of Rice Husk Ash on Strength and Durability of High Strength High Performance Concrete

Authors: H. B. Mahmud, Syamsul Bahri, Y. W. Yee, Y. T. Yeap

Abstract:

This paper reports the strength and durability properties of high strength high performance concrete incorporating rice husk ash (RHA) having high silica, low carbon content and appropriate fineness. In this study concrete containing 10%, 15% and 20% RHA as cement replacement and water to binder ratio of 0.25 were investigated. The results show that increasing amount of RHA increases the dosage of superplasticizer to maintain similar workability. Partial replacement of cement with RHA did not increase the early age compressive strength of concrete. However, concrete containing RHA showed higher compressive strength at later ages. The results showed that compressive strength of concrete in the 90-115 MPa range can be obtained at 28 curing days and the durability properties of RHA concrete performed better than that of control concrete. The water absorption of concrete incorporating 15% RHA exhibited the lowest value. The porosity of concrete is consistent with water absorption whereby higher replacement of RHA decreased the porosity of concrete. There is a positive correlation between reducing porosity and increasing compressive strength of high strength high performance concrete. The results also indicate that up to 20% of RHA incorporation could be advantageously blended with cement without adversely affecting the strength and durability properties of concrete.

Keywords: Compressive strength, durability, high performance concrete, rice husk ash.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2209
1243 Estimation of Tensile Strength for Granitic Rocks by Using Discrete Element Approach

Authors: Aliakbar Golshani, Armin Ramezanzad

Abstract:

Tensile strength which is an important parameter of the rock for engineering applications is difficult to measure directly through physical experiment (i.e. uniaxial tensile test). Therefore, indirect experimental methods such as Brazilian test have been taken into consideration and some relations have been proposed in order to obtain the tensile strength for rocks indirectly. In this research, to calculate numerically the tensile strength for granitic rocks, Particle Flow Code in three-dimension (PFC3D) software were used. First, uniaxial compression tests were simulated and the tensile strength was determined for Inada granite (from a quarry in Kasama, Ibaraki, Japan). Then, by simulating Brazilian test condition for Inada granite, the tensile strength was indirectly calculated again. Results show that the tensile strength calculated numerically agrees well with the experimental results obtained from uniaxial tensile tests on Inada granite samples.

Keywords: Numerical Simulation, PFC, Tensile Strength, Brazilian Test.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 344
1242 Effect of Concrete Strength and Aspect Ratio on Strength and Ductility of Concrete Columns

Authors: Mohamed A. Shanan, Ashraf H. El-Zanaty, Kamal G. Metwally

Abstract:

This paper presents the effect of concrete compressive strength and rectangularity ratio on strength and ductility of normal and high strength reinforced concrete columns confined with transverse steel under axial compressive loading. Nineteen normal strength concrete rectangular columns with different variables tested in this research were used to study the effect of concrete compressive strength and rectangularity ratio on strength and ductility of columns. The paper also presents a nonlinear finite element analysis for these specimens and another twenty high strength concrete square columns tested by other researchers using ANSYS 15 finite element software. The results indicate that the axial force – axial strain relationship obtained from the analytical model using ANSYS are in good agreement with the experimental data. The comparison shows that the ANSYS is capable of modeling and predicting the actual nonlinear behavior of confined normal and high-strength concrete columns under concentric loading. The maximum applied load and the maximum strain have also been confirmed to be satisfactory. Depending on this agreement between the experimental and analytical results, a parametric numerical study was conducted by ANSYS 15 to clarify and evaluate the effect of each variable on strength and ductility of the columns.

Keywords: ANSYS, concrete compressive strength effect, ductility, rectangularity ratio, strength.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1411
1241 Improving Concrete Properties with Fibers Addition

Authors: E. Mello, C. Ribellato, E. Mohamedelhassan

Abstract:

This study investigated the improvement in concrete properties with addition of cellulose, steel, carbon and PET fibers. Each fiber was added at four percentages to the fresh concrete, which was moist-cured for 28-days and then tested for compressive, flexural and tensile strengths. Changes in strength and increases in cost were analyzed. Results showed that addition of cellulose caused a decrease between 9.8% and 16.4% in compressive strength. This range may be acceptable as cellulose fibers can significantly increase the concrete resistance to fire, and freezing and thawing cycles. Addition of steel fibers to concreteincreased the compressive strength by up to 20%. Increases 121.5% and 80.7% were reported in tensile and flexural strengths respectively. Carbon fibers increased flexural and tensile strengths by up to 11% and 45%, respectively. Concrete strength properties decreased after the addition of PET fibers. Results showed that improvement in strength after addition of steel and carbon fibers may justify the extra cost of fibers.

Keywords: Concrete, compressive strength, fibers, flexural strength, tensile strength.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 10797
1240 Strength Characteristics of Shallow Gassy Sand in the Hangzhou Bay

Authors: Wang Yong, Kong Ling-Wei, Guo Ai-Guo

Abstract:

In view of geological origin, formation of the shallow gas reservoir of the Hangzhou Bay, northern Zhejiang Province, eastern China, and original occurrence characteristics of the gassy sand are analyzed. Generally, gassy sand in scale gas reservoirs is in the state of residual moisture content and the approximate scope of initial matric suction of sand ranges about from 0kPa to100kPa. Results based on GDS triaxial tests show that the classical shear strength formulas of unsaturated soil can not effectively describe basic strength characteristics of gassy sand; the relationship between apparent cohesion and matric suction of gassy sand agrees well with the power function, which can reasonably be used to describe the strength of gassy sand. In the stress path of gas release, shear strength of gassy sand will increase and experimental results show the formula proposed in this paper can effectively predict the strength increment. When saturated strength indexes of the sand are used in engineering design, moderate reduction should be considered.

Keywords: Gassy sand, Gas release, Occurrence characteristics, strength

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1355
1239 The Viscosity of Xanthan Gum Grout with Different pH and Ionic Strength

Authors: H. Ahmad Raji, R. Ziaie Moayed, M. A. Nozari

Abstract:

Xanthan gum (XG) an eco-friendly biopolymer has been recently explicitly investigated for ground improvement approaches. Rheological behavior of this additive strongly depends on electrochemical condition such as pH, ionic strength and also its content in aqueous solution. So, the effects of these factors have been studied in this paper considering various XG contents as 0.25, 0.5, 1, and 2% of water. Moreover, adjusting pH values such as 3, 5, 7 and 9 in addition to increasing ionic strength to 0.1 and 0.2 in the molar scale has covered a practical range of electrochemical condition. The viscosity of grouts shows an apparent upward trend with an increase in ionic strength and XG content. Also, pH affects the polymerization as much as other parameters. As a result, XG behavior is severely influenced by electrochemical settings

Keywords: Electrochemical condition, ionic strength, viscosity, xanthan gum.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 202
1238 Design of Roller Compacting Concrete Pavement

Authors: O. Zarrin, M. Ramezan Shirazi

Abstract:

The quality of concrete is usually defined by compressive strength, but flexural strength is the most important characteristic of concrete in a pavement which control the mix design of concrete instead of compressive strength. Therefore, the aggregates which are selected for the pavements are affected by higher flexural strength. Roller Compacting Concrete Pavement (RCCP) is not a new construction method. The other characteristic of this method is no bleeding and less shrinkage due to the lower amount of water. For this purpose, a roller is needed for placing and compacting. The surface of RCCP is not smooth; therefore, the most common use of this pavement is in an industrial zone with slower traffic speed which requires durable and tough pavement. For preparing a smoother surface, it can be achieved by asphalt paver. RCCP decrease the finishing cost because there are no bars, formwork, and the lesser labor need for placing the concrete. In this paper, different aspect of RCCP such as mix design, flexural, compressive strength and focus on the different part of RCCP on detail have been investigated.

Keywords: Flexural Strength, Compressive Strength, Pavement, Asphalt.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1778
1237 The Effect of Confinement Shapes on Over-Reinforced HSC Beams

Authors: Ross Jeffry, Muhammad N. S. Hadi

Abstract:

High strength concrete (HSC) provides high strength but lower ductility than normal strength concrete. This low ductility limits the benefit of using HSC in building safe structures. On the other hand, when designing reinforced concrete beams, designers have to limit the amount of tensile reinforcement to prevent the brittle failure of concrete. Therefore the full potential of the use of steel reinforcement can not be achieved. This paper presents the idea of confining concrete in the compression zone so that the HSC will be in a state of triaxial compression, which leads to improvements in strength and ductility. Five beams made of HSC were cast and tested. The cross section of the beams was 200×300 mm, with a length of 4 m and a clear span of 3.6 m subjected to four-point loading, with emphasis placed on the midspan deflection. The first beam served as a reference beam. The remaining beams had different tensile reinforcement and the confinement shapes were changed to gauge their effectiveness in improving the strength and ductility of the beams. The compressive strength of the concrete was 85 MPa and the tensile strength of the steel was 500 MPa and for the stirrups and helixes was 250 MPa. Results of testing the five beams proved that placing helixes with different diameters as a variable parameter in the compression zone of reinforced concrete beams improve their strength and ductility.

Keywords: Confinement, ductility, high strength concrete, reinforced concrete beam.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1942
1236 Flexural Strength Design of RC Beams with Consideration of Strain Gradient Effect

Authors: Mantai Chen, Johnny Ching Ming Ho

Abstract:

The stress-strain relationship of concrete under flexure is one of the essential parameters in assessing ultimate flexural strength capacity of RC beams. Currently, the concrete stress-strain curve in flexure is obtained by incorporating a constant scale-down factor of 0.85 in the uniaxial stress-strain curve. However, it was revealed that strain gradient would improve the maximum concrete stress under flexure and concrete stress-strain curve is strain gradient dependent. Based on the strain-gradient-dependent concrete stress-strain curve, the investigation of the combined effects of strain gradient and concrete strength on flexural strength of RC beams was extended to high strength concrete up to 100 MPa by theoretical analysis. As an extension and application of the authors’ previous study, a new flexural strength design method incorporating the combined effects of strain gradient and concrete strength is developed. A set of equivalent rectangular concrete stress block parameters is proposed and applied to produce a series of design charts showing that the flexural strength of RC beams are improved with strain gradient effect considered.

Keywords: Beams, Equivalent concrete stress block, Flexural strength, Strain gradient.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3854
1235 The Grinding Influence on the Strength of Fan-Out Wafer-Level Packages

Authors: Z. W. Zhong, C. Xu, W. K. Choi

Abstract:

To build a thin fan-out wafer-level package, the package had to be ground to a thin level. In this work, the influence of the grinding processes on the strength of the fan-out wafer-level packages was investigated. After different grinding processes, all specimens were placed on a three-point-bending fixture installed on a universal tester for three-point-bending testing, and the strength of the fan-out wafer-level packages was measured. The experiments revealed that the average flexure strength increased with the decreasing surface roughness height of the fan-out wafer-level package tested. The grinding processes had a significant influence on the strength of the fan-out wafer-level packages investigated.

Keywords: FOWLP strength, surface roughness, three-point bending, grinding.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 715
1234 Waterproofing Agent in Concrete for Tensile Improvement

Authors: Muhamad Azani Yahya, Umi Nadiah Nor Ali, Mohammed Alias Yusof, Norazman Mohamad Nor, Vikneswaran Munikanan

Abstract:

In construction, concrete is one of the materials that can commonly be used as for structural elements. Concrete consists of cement, sand, aggregate and water. Concrete can be added with admixture in the wet condition to suit the design purpose such as to prolong the setting time to improve workability. For strength improvement, concrete is being added with other hybrid materials to increase strength; this is because the tensile strength of concrete is very low in comparison to the compressive strength. This paper shows the usage of a waterproofing agent in concrete to enhance the tensile strength. High tensile concrete is expensive because the concrete mix needs fiber and also high cement content to be incorporated in the mix. High tensile concrete being used for structures that are being imposed by high impact dynamic load such as blast loading that hit the structure. High tensile concrete can be defined as a concrete mix design that achieved 30%-40% tensile strength compared to its compression strength. This research evaluates the usage of a waterproofing agent in a concrete mix as an element of reinforcement to enhance the tensile strength. According to the compression and tensile test, it shows that the concrete mix with a waterproofing agent enhanced the mechanical properties of the concrete. It is also show that the composite concrete with waterproofing is a high tensile concrete; this is because of the tensile is between 30% and 40% of the compression strength. This mix is economical because it can produce high tensile concrete with low cost.

Keywords: High tensile concrete, waterproofing agent, concrete, rheology.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1020
1233 Geometrical Structure and Layer Orientation Effects on Strength, Material Consumption and Building Time of FDM Rapid Prototyped Samples

Authors: Ahmed A. D. Sarhan, Chong Feng Duan, Mum Wai Yip, M. Sayuti

Abstract:

Rapid Prototyping (RP) technologies enable physical parts to be produced from various materials without depending on the conventional tooling. Fused Deposition Modeling (FDM) is one of the famous RP processes used at present. Tensile strength and compressive strength resistance will be identified for different sample structures and different layer orientations of ABS rapid prototype solid models. The samples will be fabricated by a FDM rapid prototyping machine in different layer orientations with variations in internal geometrical structure. The 0° orientation where layers were deposited along the length of the samples displayed superior strength and impact resistance over all the other orientations. The anisotropic properties were probably caused by weak interlayer bonding and interlayer porosity.

Keywords: Building orientation, compression strength, rapid prototyping, tensile strength.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1468
1232 Wavelet Based Residual Method of Detecting GSM Signal Strength Fading

Authors: Danladi Ali, Onah Festus Iloabuchi

Abstract:

In this paper, GSM signal strength was measured in order to detect the type of the signal fading phenomenon using onedimensional multilevel wavelet residual method and neural network clustering to determine the average GSM signal strength received in the study area. The wavelet residual method predicted that the GSM signal experienced slow fading and attenuated with MSE of 3.875dB. The neural network clustering revealed that mostly -75dB, -85dB and -95dB were received. This means that the signal strength received in the study is a weak signal.

Keywords: One-dimensional multilevel wavelets, path loss, GSM signal strength, propagation and urban environment.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1715
1231 Influence of Flexural Reinforcement on the Shear Strength of RC Beams without Stirrups

Authors: Guray Arslan, Riza S. O. Keskin

Abstract:

Numerical investigations were conducted to study the influence of flexural reinforcement ratio on the diagonal cracking strength and ultimate shear strength of reinforced concrete (RC) beams without stirrups. Three-dimensional nonlinear finite element analyses (FEAs) of the beams with flexural reinforcement ratios ranging from 0.58% to 2.20% subjected to a mid-span concentrated load were carried out. It is observed that the load-deflection and loadstrain curves obtained from the numerical analyses agree with those obtained from the experiments. It is concluded that flexural reinforcement ratio has a significant effect on the shear strength and deflection capacity of RC beams without stirrups. The predictions of diagonal cracking strength and ultimate shear strength of beams obtained by using the equations defined by a number of codes and researchers are compared with each other and with the experimental values.

Keywords: Finite element, flexural reinforcement, reinforced concrete beam, shear strength.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2222
1230 The Effect of Ageing Treatment of Aluminum Alloys for Fuselage Structure-Light Aircraft

Authors: Shwe Wut Hmon Aye, Kay Thi Lwin, Waing Waing Kay Khine Oo

Abstract:

As the material used for fuselage structure must possess low density, high strength to weight ratio, the selection of appropriate materials for fuselage structure is one of the most important tasks. Aluminum metal itself is soft and low in strength. It can be made stronger by giving proper combination of suitable alloy addition, mechanical treatment and thermal treatment. The usual thermal treatment given to aluminum alloys is called age-hardening or precipitation hardening. In this paper, the studies are carried out on 7075 aluminum alloy which is how to improve strength level for fuselage structure. The marked effect of the strength on the ternary alloy is clearly demonstrated at several ageing times and temperatures. It is concluded that aluminum-zinc-magnesium alloy can get the highest strength level in natural ageing.

Keywords: Aluminum alloy, ageing, heat treatment, strength.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2084
1229 Shrinkage of High Strength Concrete

Authors: S.M. Gupta, V.K. Sehgal, S.K. Kaushik

Abstract:

This paper presents the results of an experimental investigation carried out to evaluate the shrinkage of High Strength Concrete. High Strength Concrete is made by partially replacement of cement by flyash and silica fume. The shrinkage of High Strength Concrete has been studied using the different types of coarse and fine aggregates i.e. Sandstone and Granite of 12.5 mm size and Yamuna and Badarpur Sand. The Mix proportion of concrete is 1:0.8:2.2 with water cement ratio as 0.30. Superplasticizer dose @ of 2% by weight of cement is added to achieve the required degree of workability in terms of compaction factor. From the test results of the above investigation it can be concluded that the shrinkage strain of High Strength Concrete increases with age. The shrinkage strain of concrete with replacement of cement by 10% of Flyash and Silica fume respectively at various ages are more (6 to 10%) than the shrinkage strain of concrete without Flyash and Silica fume. The shrinkage strain of concrete with Badarpur sand as Fine aggregate at 90 days is slightly less (10%) than that of concrete with Yamuna Sand. Further, the shrinkage strain of concrete with Granite as Coarse aggregate at 90 days is slightly less (6 to 7%) than that of concrete with Sand stone as aggregate of same size. The shrinkage strain of High Strength Concrete is also compared with that of normal strength concrete. Test results show that the shrinkage strain of high strength concrete is less than that of normal strength concrete.

Keywords: Shrinkage high strength concrete, fly ash, silica fume& superplastizers.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2230
1228 Quality of Concrete of Recent Development Projects in Libya

Authors: Mohamed .S .Alazhari, Milad. M. Al Shebani

Abstract:

Numerous concrete structures projects are currently running in Libya as part of a US$50 billion government funding. The quality of concrete used in 20 different construction projects were assessed based mainly on the concrete compressive strength achieved. The projects are scattered all over the country and are at various levels of completeness. For most of these projects, the concrete compressive strength was obtained from test results of a 150mm standard cube mold. Statistical analysis of collected concrete compressive strengths reveals that the data in general followed a normal distribution pattern. The study covers comparison and assessment of concrete quality aspects such as: quality control, strength range, data standard deviation, data scatter, and ratio of minimum strength to design strength. Site quality control for these projects ranged from very good to poor according to ACI214 criteria [1]. The ranges (Rg) of the strength (max. strength – min. strength) divided by average strength are from (34% to 160%). Data scatter is measured as the range (Rg) divided by standard deviation () and is found to be (1.82 to 11.04), indicating that the range is ±3σ. International construction companies working in Libya follow different assessment criteria for concrete compressive strength in lieu of national unified procedure. The study reveals that assessments of concrete quality conducted by these construction companies usually meet their adopted (internal) standards, but sometimes fail to meet internationally known standard requirements. The assessment of concrete presented in this paper is based on ACI, British standards and proposed Libyan concrete strength assessment criteria.

Keywords: Acceptance criteria, Concrete, Compressive strength, quality control

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1502
1227 Experimental Study on Recycled Aggregate Pervious Concrete

Authors: Ji Wenzhan, Zhang Tao, Li Guoyou

Abstract:

Concrete is the most widely used building material in the world. At the same time, the world produces a large amount of construction waste each year. Waste concrete is processed and treated, and the recycled aggregate is used to make pervious concrete, which enables the construction waste to be recycled. Pervious concrete has many advantages such as permeability to water, protection of water resources, and so on. This paper tests the recycled aggregate obtained by crushing high-strength waste concrete (TOU) and low-strength waste concrete (PU), and analyzes the effect of porosity, amount of cement, mineral admixture and recycled aggregate on the strength of permeable concrete. The porosity is inversely proportional to the strength, and the amount of cement used is proportional to the strength. The mineral admixture can effectively improve the workability of the mixture. The quality of recycled aggregates had a significant effect on strength. Compared with concrete using "PU" aggregates, the strength of 7d and 28d concrete using "TOU" aggregates increased by 69.0% and 73.3%, respectively. Therefore, the quality of recycled aggregates should be strictly controlled during production, and the mix ratio should be designed according to different use environments and usage requirements. This test prepared a recycled aggregate permeable concrete with a compressive strength of 35.8 MPa, which can be used for light load roads and provides a reference for engineering applications.

Keywords: Recycled aggregate, pervious concrete, compressive strength, permeability.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 417
1226 Hysteresis Behaviour of Mass Concrete Mixed with Plastic Fibre under Compression

Authors: A. A. Okeola, T. I. Sijuade

Abstract:

Unreinforced concrete is a comparatively brittle substance when exposed to tensile stresses, the required tensile strength is provided by the introduction of steel which is used as reinforcement. The strength of concrete may be improved tremendously by the addition of fibre. This study focused on investigating the compressive strength of mass concrete mixed with different percentage of plastic fibre. Twelve samples of concrete cubes with varied percentage of plastic fibre at 7, 14 and 28 days of water submerged curing were tested under compression loading. The result shows that the compressive strength of plastic fibre reinforced concrete increased with rise in curing age. The strength increases for all percentage dosage of fibre used for the concrete. The density of the Plastic Fibre Reinforced Concrete (PFRC) also increases with curing age, which implies that during curing, concrete absorbs water which aids its hydration. The least compressive strength obtained with the introduction of plastic fibre is more than the targeted 20 N/mm2 recommended for construction work showing that PFRC can be used where significant loading is expected.

Keywords: Compressive strength, plastic fibre, concrete, curing, density.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 920