Modeling Aggregation of Insoluble Phase in Reactors
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 33156
Modeling Aggregation of Insoluble Phase in Reactors

Authors: A. Brener, B. Ismailov, G. Berdalieva

Abstract:

In the paper we submit the modification of kinetic Smoluchowski equation for binary aggregation applying to systems with chemical reactions of first and second orders in which the main product is insoluble. The goal of this work is to create theoretical foundation and engineering procedures for calculating the chemical apparatuses in the conditions of joint course of chemical reactions and processes of aggregation of insoluble dispersed phases which are formed in working zones of the reactor.

Keywords: Binary aggregation, Clusters, Chemical reactions, Insoluble phases.

Digital Object Identifier (DOI): doi.org/10.5281/zenodo.1089357

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1489

References:


[1] H. Sontag, K. Strenge, Koagulation und Stabilitat Disperser Systeme, Veb Deutsher Verlag der Wissenschaften, Berlin 1970, p. 147.
[2] H. Stechemesser, B. Dobias (eds.), Coagulation and Flocculation, Taylor & Francis, Boca Raton, 2005, p. 850.
[3] J.C. Neu, J.A. Canizo, L.L. Bonilla, "Three eras of micellization”, Phys. Rev. E 66, 2002, 061406.
[4] V. Volterra, Leçons sur la théorie mathématique de lalutte pour la vie, Gauther-Villars et Cie, Paris, 1931, p.286.
[5] V.Y. Rudyak, Statistical Theory of Dissipative Processes in Gases and Liquids, (Nauka, Novosibirsk, 1987, p. 272. (In Russian).
[6] A. M. Brener, "Nonlocal Equations of the Heat and Mass Transfer in Technological Processes”, Theor. Found. Chem. Eng 40, 2006, pp. 564-573.
[7] A. M. Brener, "Nonlocal Model of Aggregation in Polydispersed Systems”, Theor. Found. Chem. Eng 45, 2011, pp. 349-353.
[8] D. Kashchiev, Nucleation: Basic Theory with Applications, Butterworth Heinemann, Oxford, 2000, p. 525.
[9] L. Onsager, "Reciprocal Relations in Irreversible Processes. I”, Phys. Rev. 37, 1931, pp. 405-415.
[10] H.B.G. Casimir, "On Onsager's principle of microscopic reversibility”, Rev. Mod. Phys. 1945, 17, 343.
[11] D. Jou, J. Casas-Vazquez, and M. Criado-Sancho, Thermodynamics of Fluids under Flow, Springer, Berlin, 2001, p. 231.
[12] S.R. de Groot, Thermodynamics of Irreversible Processes North-Holland Publ. Comp., 1952, p. 280.
[13] A. Brener, A. Muratov, B. Balabekov, "Non-Local Model of Aggregation Processes”, Jour. of Mater. Sci. and Eng. A, 1, No3, 2011, pp. 451-456.
[14] J. Kevorkian and J. Cole, Multiple Scale and Singular Perturbation Methods, Springer, New York, 1996, p. 412.
[15] J.A.D. Wattis, "An introduction to mathematical models of coagulation–fragmentation processes: A discrete deterministic mean-field approach ", Physica D 222, 2006, 1.
[16] A. Brener, B. Balabekov and A. Kaugaeva, "Non-Local Model of Aggregation in Uniform Polydispersed Systems”, Chem. Eng. Trans. 2009, pp. 783-789.
[17] J. Kozak, V. Basios, and G. Nicolis, "Geometrical Factors in Protein Nucleation”, Biophys. Chem., 2003, 105, 495.
[18] Stechemesser, H., Dobias, B. (eds.) Coagulation and Flocculation Gooding, Taylor & Francis, Boca Raton, London, 2005.