Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 265

Search results for: Biomass

265 Evaluation of Biomass Introduction Methods in Coal Co-Gasification

Authors: Ruwaida Abdul Rasid, Kevin J. Hughes, Peter J. Heggs, Mohamed Pourkashanian

Abstract:

Heightened concerns over the amount of carbon emitted from coal-related processes are generating shifts to the application of biomass. In co-gasification, where coal is gasified along with biomass, the biomass may be fed together with coal (cofeeding) or an independent biomass gasifier needs to be integrated with the coal gasifier. The main aim of this work is to evaluate the biomass introduction methods in coal co-gasification. This includes the evaluation of biomass concentration input (B0 to B100) and its gasification performance. A process model is developed and simulated in Aspen HYSYS, where both coal and biomass are modelled according to its ultimate analysis. It was found that the syngas produced increased with increasing biomass content for both co-feeding and independent schemes. However, the heating values and heat duties decreases with biomass concentration as more CO2 are produced from complete combustion.

Keywords: Aspen HYSYS, biomass, coal, co-gasification modelling and simulation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2002
264 Estimation Method for the Construction of Hydrogen Society with Various Biomass Resources in Japan-Project of Cost Reductions in Biomass Transport and Feasibility for Hydrogen Station with Biomass-

Authors: Masaki Tajima, Kenji Imou, Shinya Yokoyama

Abstract:

It was determined that woody biomass and livestock excreta can be utilized as hydrogen resources and hydrogen produced from such sources can be used to fill fuel cell vehicles (FCVs) at hydrogen stations. It was shown that the biomass transport costs for hydrogen production may be reduced the costs for co-generation. In the Tokyo Metropolitan Area, there are only a few sites capable of producing hydrogen from woody biomass in amounts greater than 200 m3/h-the scale required for a hydrogen station to be operationally practical. However, in the case of livestock excreta, it was shown that 15% of the municipalities in this area are capable of securing sufficient biomass to be operationally practical for hydrogen production. The differences in feasibility of practical operation depend on the type of biomass.

Keywords: Biomass Resources, Hydrogen Production, Hydrogen Station, Transport Cost.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1104
263 Carbon Storage in Above-Ground Biomass of Tropical Deciduous Forest in Ratchaburi Province, Thailand

Authors: Ubonwan Chaiyo, Savitri Garivait, Kobsak Wanthongchai

Abstract:

The study site was located in Ratchaburi Province, Thailand. Four experimental plots in dry dipterocarp forest (DDF) and four plots in mixed deciduous forest (MDF) were set up to estimate the above-ground biomass of tree, sapling and bamboo. The allometry equations were used to investigate above-ground biomass of these vegetation. Seedling and other understory were determined using direct harvesting method. Carbon storage in above-ground biomass was calculated based on IPCC 2006. The results showed that the above-ground biomass of DDF at 20-40% slope, <20% slope and MDF at <20% slope were 91.96, 30.95 and 59.44 ton/ha, respectively. Bamboo covers about half of total aboveground biomass in MDF, which is a specific characteristic of this area. The carbon sequestration potential in above-ground biomass of plot slope range 20-40% DDF, <20% DDF and <20% MDF are 43.22, 14.55 and 27.94 ton C/ha, respectively.

Keywords: Carbon storage, aboveground biomass, tropical deciduous forest, dry dipterocarp forest, mixed deciduous forest.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2583
262 Application of Biomass Ashes as Supplementary Cementitious Materials in the Cement Mortar Production

Authors: S. Šupić, M. Malešev, V. Radonjanin, M. Radeka, M. Laban

Abstract:

The production of low cost and environmentally friendly products represents an important step for developing countries. Biomass is one of the largest renewable energy sources, and Serbia is among the top European countries in terms of the amount of available and unused biomass. Substituting cement with the ashes obtained by the combustion of biomass would reduce the negative impact of concrete industry on the environment and would provide a waste valorization by the reuse of this type of by-product in mortars and concretes manufacture. The study contains data on physical properties, chemical characteristics and pozzolanic properties of obtained biomass ashes: wheat straw ash and mixture of wheat and soya straw ash in Serbia, which were, later, used as supplementary cementitious materials in preparation of mortars. Experimental research of influence of biomass ashes on physical and mechanical properties of cement mortars was conducted. The results indicate that the biomass ashes can be successfully used in mortars as substitutes of cement without compromising their physical and mechanical performances.

Keywords: Biomass, ash, cementitious material, mortar.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 565
261 Pyrolysis Characteristics and Kinetics of Macroalgae Biomass Using Thermogravimetric Analyzer

Authors: Zhao Hui, Yan Huaxiao, Zhang Mengmeng, Qin Song

Abstract:

The pyrolysis characteristics and kinetics of seven marine biomass, which are fixed Enteromorpha clathrata, floating Enteromorpha clathrata, Ulva lactuca L., Zosterae Marinae L., Thallus Laminariae, Asparagus schoberioides kunth and Undaria pinnatifida (Harv.), were studied with thermogravimetric analysis method. Simultaneously, cornstalk, which is a grass biomass, and sawdust, which is a lignocellulosic biomass, were references. The basic pyrolysis characteristics were studied by using TG- DTG-DTA curves. The results showed that there were three stages (dehydration, dramatic weight loss and slow weight loss) during the whole pyrolysis process of samples. The Tmax of marine biomass was significantly lower than two kinds of terrestrial biomass. Zosterae Marinae L. had a relatively high stability of pyrolysis, but floating Enteromorpha clathrata had lowest stability of pyrolysis and a good combustion characteristics. The corresponding activation energy E and frequency factor A were obtained by Coats-Redfern method. It was found that the pyrolysis reaction mechanism functions of three kinds of biomass are different.

Keywords: macroalgae biomass, pyrolysis, thermogravimetric analysis, thermolysis kinetics.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2447
260 The Gasification of Fructose in Supercritical Water

Authors: Shyh-Ming Chern, H. Y. Cheng

Abstract:

Biomass is renewable and sustainable. As an energy source, it will not release extra carbon dioxide into the atmosphere. Hence, tremendous efforts have been made to develop technologies capable of transforming biomass into suitable forms of bio-fuel. One of the viable technologies is gasifying biomass in supercritical water (SCW), a green medium for reactions. While previous studies overwhelmingly selected glucose as a model compound for biomass, the present study adopted fructose for the sake of comparison. The gasification of fructose in SCW was investigated experimentally to evaluate the applicability of supercritical water processes to biomass gasification. Experiments were conducted with an autoclave reactor. Gaseous product mainly consists of H2, CO, CO2, CH4 and C2H6. The effect of two major operating parameters, the reaction temperature (673-873 K) and the dosage of oxidizing agent (0-0.5 stoichiometric oxygen), on the product gas composition, yield and heating value was also examined, with the reaction pressure fixed at 25 MPa.

Keywords: Biomass, Fructose, Gasification, Supercritical water.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1789
259 Hydrogen Production by Gasification of Biomass from Copoazu Waste

Authors: Emilio Delgado, William Aperador, Alis Pataquiva

Abstract:

Biomass is becoming a large renewable resource for power generation; it is involved in higher frequency in environmentally clean processes, and even it is used for biofuels preparation. On the other hand, hydrogen – other energy source – can be produced in a variety of methods including gasification of biomass. In this study, the production of hydrogen by gasification of biomass waste is examined. This work explores the production of a gaseous mixture with high power potential from Amazonas´ specie known as copoazu, using a counter-flow fixed-bed bioreactor.

Keywords: Copoazu, Gasification, Hydrogen production.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1427
258 Allometric Models for Biomass Estimation in Savanna Woodland Area, Niger State, Nigeria

Authors: Abdullahi Jibrin, Aishetu Abdulkadir

Abstract:

The development of allometric models is crucial to accurate forest biomass/carbon stock assessment. The aim of this study was to develop a set of biomass prediction models that will enable the determination of total tree aboveground biomass for savannah woodland area in Niger State, Nigeria. Based on the data collected through biometric measurements of 1816 trees and destructive sampling of 36 trees, five species specific and one site specific models were developed. The sample size was distributed equally between the five most dominant species in the study site (Vitellaria paradoxa, Irvingia gabonensis, Parkia biglobosa, Anogeissus leiocarpus, Pterocarpus erinaceous). Firstly, the equations were developed for five individual species. Secondly these five species were mixed and were used to develop an allometric equation of mixed species. Overall, there was a strong positive relationship between total tree biomass and the stem diameter. The coefficient of determination (R2 values) ranging from 0.93 to 0.99 P < 0.001 were realised for the models; with considerable low standard error of the estimates (SEE) which confirms that the total tree above ground biomass has a significant relationship with the dbh. F-test values for the biomass prediction models were also significant at p < 0.001 which indicates that the biomass prediction models are valid. This study recommends that for improved biomass estimates in the study site, the site specific biomass models should preferably be used instead of using generic models.

Keywords: Allometriy, biomass, carbon stock, model, regression equation, woodland, inventory.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2382
257 Ionic Liquid Pretreatment and Enzymatic Hydrolysis of Wood Biomass

Authors: M. Ungurean, F. Fitigau, C. Paul, A. Ursoiu, F. Peter

Abstract:

Pretreatment of lignocellulosic biomass materials from poplar, acacia, oak, and fir with different ionic liquids (ILs) containing 1-alkyl-3-methyl-imidazolium cations and various anions has been carried out. The dissolved cellulose from biomass was precipitated by adding anti-solvents into the solution and vigorous stirring. Commercial cellulases Celluclast 1.5L and Accelerase 1000 have been used for hydrolysis of untreated and pretreated lignocellulosic biomass. Among the tested ILs, [Emim]COOCH3 showed the best efficiency, resulting in highest amount of liberated reducing sugars. Pretreatment of lignocellulosic biomass using glycerol-ionic liquids combined pretreatment and dilute acid-ionic liquids combined pretreatment were evaluated and compared with glycerol pretreatment, ionic liquids pretreatment and dilute acid pretreatment.

Keywords: Cellulase, enzymatic hydrolysis, lignocellulosicbiomass, pretreatment.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2563
256 Atmospheric Fluid Bed Gasification of Different Biomass Fuels

Authors: Martin Lisý, Marek Baláš, Michal Špiláček, Zdeněk Skála

Abstract:

This paper shortly describes various types of biomass and a growing number of facilities utilizing the biomass in the Czech Republic. The considerable part of this paper deals with energy parameters of the most frequently used types of biomass and results of their gasification testing. Sixteen most used "Czech" woody plants and grasses were selected; raw, element and biochemical analyses were performed and basic calorimetric values, ash composition, and ash characteristic temperatures were identified. Later, each biofuel was tested in a fluidized bed gasifier. The essential part of this paper provides results of the gasification of selected biomass types. Operating conditions are described in detail with a focus on individual fuels properties. Gas composition and impurities content are also identified. In terms of operating conditions and gas quality, the essential difference occurred mainly between woody plants and grasses. The woody plants were evaluated as more suitable fuels for fluidized bed gasifiers. Testing results significantly help with a decision-making process regarding suitability of energy plants for growing and with a selection of optimal biomass-treatment technology.

Keywords: Biomass Growing, Biomass Types, Gasification.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1683
255 Influence of Culturing Conditions on Biomass Yield, Total Lipid, and Fatty Acid Composition of Some Filamentous Fungi

Authors: Alla V. Goncharova, Tatyana A. Karpenyuk, Yana S. Tsurkan, Rosa U. Beisembaeva, Togzhan D. Mukasheva, Ludmila V. Ignatova, Ramza Z. Berzhanova

Abstract:

In this work the effect of culturing conditions of filamentous fungi Penicillium raistrickii, Penicillium anatolicum, Fusarium sp. on biomass yield, the content of total lipids and fatty acids was studied. It has been established that in time the process of lipids accumulation correlated with biomass growth of cultures, reaching maximum values in stationary growth phase.

Biomass yield and accumulation of general lipids was increased by adding zinc to the culture medium. The more intensive accumulation of biomass and general lipids was observed at temperature 18°C. Lowering the temperature of culturing has changed the ratio of saturated: Unsaturated fatty acids in the direction of increasing the latter.

Keywords: Biomass, culturing conditions, fungi, fatty acids (FA), growth dynamics, lipids.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1530
254 Role of Biorefining and Biomass Utilization in Environmental Control

Authors: Subir Kundu, Sukhendra Singh, Sumedha Ojha, Kanika Kundu

Abstract:

The continuous decline of petroleum and natural gas reserves and non linear rise of oil price has brought about a realisation of the need for a change in our perpetual dependence on the fossil fuel. A day to day increased consumption of crude and petroleum products has made a considerable impact on our foreign exchange reserves. Hence, an alternate resource for the conversion of energy (both liquid and gas) is essential for the substitution of conventional fuels. Biomass is the alternate solution for the present scenario. Biomass can be converted into both liquid as well as gaseous fuels and other feedstocks for the industries.

Keywords: Bioenergy, Biomass conversion, Biorefining, Efficient utilisation of night soil.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1665
253 Development of Efficient Fungal Biomass-Degrading Enzyme Mixtures for Saccharification of Local Lignocellulosic Feedstock

Authors: W. Wanmolee, W. Sornlake, N. Laosiripojana, V. Champreda

Abstract:

Conversion of lignocellulosic biomass is the basis process for production of fuels, chemicals and materials in the sustainable biorefinery industry. Saccharification of lignocellulosic biomass is an essential step which produces sugars for further conversion to target value-added products e.g. bio-ethanol, bio-plastic, g-valerolactone (GVL), 5-hydroxymethylfuroic acid (HMF), levulinic acid, etc. The goal of this work was to develop an efficient enzyme for conversion of biomass to reducing sugar based on crude fungal enzyme from Chaetomium globosum BCC5776 produced by submerged fermentation and evaluate its activity comparing to a commercial Acremonium cellulase. Five local biomasses in Thailand: rice straw, sugarcane bagasse, corncobs, corn stovers, and palm empty fruit bunches were pretreated and hydrolyzed with varying enzyme loadings. Saccharification of the biomass led to different reducing sugar levels from 115 mg/g to 720 mg/g from different types of biomass using cellulase dosage of 9 FPU/g. The reducing sugar will be further employed as sugar feedstock for production of ethanol or commodity chemicals. This work demonstrated the use of promising enzyme candidate for conversion of local lignocellulosic biomass in biorefinery industry.

Keywords: Biomass, Cellulase, Chaetomiun glubosum, Saccharification.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2128
252 Efficient Utilization of Biomass for Bioenergy in Environmental Control

Authors: Subir Kundu, Sukhendra Singh, Sumedha Ojha, Kanika Kundu

Abstract:

The continuous decline of petroleum and natural gas reserves and non linear rise of oil price has brought about a realisation of the need for a change in our perpetual dependence on the fossil fuel. A day to day increased consumption of crude and petroleum products has made a considerable impact on our foreign exchange reserves. Hence, an alternate resource for the conversion of energy (both liquid and gas) is essential for the substitution of conventional fuels. Biomass is the alternate solution for the present scenario. Biomass can be converted into both liquid as well as gaseous fuels and other feedstocks for the industries.

Keywords: Bioenergy, Biomass conversion, Biorefining, Efficient utilisation of night soil.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2133
251 Effect of Nitrogen and Carbon Sources on Growth and Lipid Production from Mixotrophic Growth of Chlorella sp. KKU-S2

Authors: Ratanaporn Leesing, Thidarat Papone, Mutiyaporn Puangbut

Abstract:

Mixotrophic cultivation of the isolated freshwater microalgae Chlorella sp. KKU-S2 in batch shake flask for biomass and lipid productions, different concentration of glucose as carbon substrate, different nitrogen source and concentrations were investigated. Using 1.0g/L of NaNO3 as nitrogen source, the maximum biomass yield of 10.04g/L with biomass productivity of 1.673g/L d was obtained using 40g/L glucose, while a biomass of 7.09, 8.55 and 9.45g/L with biomass productivity of 1.182, 1.425 and 1.575g/L d were found at 20, 30 and 50g/L glucose, respectively. The maximum lipid yield of 3.99g/L with lipid productivity of 0.665g/L d was obtained when 40g/L glucose was used. Lipid yield of 1.50, 3.34 and 3.66g/L with lipid productivity of 0.250, 0.557 and 0.610g/L d were found when using the initial concentration of glucose at 20, 30 and 50g/L, respectively. Process product yield (YP/S) of 0.078, 0.119, 0.158 and 0.094 were observed when glucose concentration was 20, 30, 40 and 50 g/L, respectively. The results obtained from the study shows that mixotrophic culture of Chlorella sp. KKU-S2 is a desirable cultivation process for microbial lipid and biomass production. 

Keywords: Mixotrophic cultivation, microalgal lipid, Chlorella sp. KKU-S2.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2490
250 Enzymatic Saccharification of Dilute Alkaline Pre-treated Microalgal (Tetraselmis suecica) Biomass for Biobutanol Production

Authors: M. A. Kassim, R. Potumarthi, A. Tanksale, S. C. Srivatsa, S. Bhattacharya

Abstract:

Enzymatic saccharification of biomass for reducing sugar production is one of the crucial processes in biofuel production through biochemical conversion. In this study, enzymatic saccharification of dilute potassium hydroxide (KOH) pre-treated Tetraselmis suecica biomass was carried out by using cellulase enzyme obtained from Trichoderma longibrachiatum. Initially, the pre-treatment conditions were optimised by changing alkali reagent concentration, retention time for reaction, and temperature. The T. suecica biomass after pre-treatment was also characterized using Fourier Transform Infrared Spectra and Scanning Electron Microscope. These analyses revealed that the functional group such as acetyl and hydroxyl groups, structure and surface of T. suecica biomass were changed through pre-treatment, which is favourable for enzymatic saccharification process. Comparison of enzymatic saccharification of untreated and pre-treated microalgal biomass indicated that higher level of reducing sugar can be obtained from pre-treated T. suecica. Enzymatic saccharification of pre-treated T. suecica biomass was optimised by changing temperature, pH, and enzyme concentration to solid ratio ([E]/[S]). Highest conversion of carbohydrate into reducing sugar of 95% amounted to reducing sugar yield of 20 (wt%) from pre-treated T. suecica was obtained from saccharification, at temperature: 40°C, pH: 4.5 and [E]/[S] of 0.1 after 72 h of incubation. Hydrolysate obtained from enzymatic saccharification of pretreated T. suecica biomass was further fermented into biobutanol using Clostridium saccharoperbutyliticum as biocatalyst. The results from this study demonstrate a positive prospect of application of dilute alkaline pre-treatment to enhance enzymatic saccharification and biobutanol production from microalgal biomass.

Keywords: Microalgal biomass, enzymatic saccharification, biobutanol, fermentation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2592
249 Root System Production and Aboveground Biomass Production of Chosen Cover Crops

Authors: M. Hajzler, J. Klimesova, T. Streda, K. Vejrazka, V. Marecek, T. Cholastova

Abstract:

The most planted cover crops in the Czech Republic are mustard (Sinapis alba) and phacelia (Phacelia tanacetifolia Benth.). A field trial was executed to evaluate root system size (RSS) in eight varieties of mustard and five varieties of phacelia on two locations, in three BBCH phases and in two years. The relationship between RSS and aboveground biomass was inquired. The root system was assessed by measuring its electric capacity. Aboveground mass and root samples to be evaluated by means of a digital image analysis were recovered in the BBCH phase 70. The yield of aboveground biomass of mustard was always statistically significantly higher than that of phacelia. Mustard showed a statistically significant negative correlation between root length density (RLD) within 10 cm and aboveground biomass weight (r = - 0.46*). Phacelia featured a statistically significant correlation between aboveground biomass production and nitrate nitrogen content in soil (r=0.782**).

Keywords: Aboveground Biomass, Cover crop, Nitrogen content, Root system size

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1438
248 Simulation of Enhanced Biomass Gasification for Hydrogen Production using iCON

Authors: Mohd K. Yunus, Murni M. Ahmad, Abrar Inayat, Suzana Yusup

Abstract:

Due to the environmental and price issues of current energy crisis, scientists and technologists around the globe are intensively searching for new environmentally less-impact form of clean energy that will reduce the high dependency on fossil fuel. Particularly hydrogen can be produced from biomass via thermochemical processes including pyrolysis and gasification due to the economic advantage and can be further enhanced through in-situ carbon dioxide removal using calcium oxide. This work focuses on the synthesis and development of the flowsheet for the enhanced biomass gasification process in PETRONAS-s iCON process simulation software. This hydrogen prediction model is conducted at operating temperature between 600 to 1000oC at atmospheric pressure. Effects of temperature, steam-to-biomass ratio and adsorbent-to-biomass ratio were studied and 0.85 mol fraction of hydrogen is predicted in the product gas. Comparisons of the results are also made with experimental data from literature. The preliminary economic potential of developed system is RM 12.57 x 106 which equivalent to USD 3.77 x 106 annually shows economic viability of this process.

Keywords: Biomass, Gasification, Hydrogen, iCON.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2294
247 Estimation of Carbon Released From Dry Dipterocarp Forest Fire in Thailand

Authors: Ubonwan Chaiyo, Yannick Pizzo, Savitri Garivait

Abstract:

This study focused on the estimation of carbon released to the atmosphere from dry dipterocarp forest (DDF) fires in Thailand. Laboratory experiments were conducted using a cone calorimeter to simulate the DDF fires. The leaf litter collected from DDF in western Thailand was used as biomass fuel. Three different masses of leaf litter were employed, 7g, 10g and 13g, to estimate the carbon released from this type of vegetation fire to the atmosphere. The chemical analysis of the leaf litter showed that the carbon content in the experimental biomass fuel was 46.0±0.1%. From the experiments, it was found that more than 95% of the carbon input was converted to carbon released to the atmosphere, while less than 5% were left in the form of residues, and returned to soil. From the study, the carbon released amounted 440.213±2.243 g/kgdry biomass, and the carbon retained in the residues was 19.786±2.243 g/kgdry biomass. The quantity of biomass fuel consumed to produce 1 g of carbon released was 2.27±0.01gkgdry biomass. Using these experimental data of carbon produced by the DDF fires, it was estimated that this type of fires in 2009 contributed to 4.659 tonnes of carbon released to the atmosphere, and 0.229 tonnes of carbon in the residues to be returned to soil in Thailand.

Keywords: Carbon mass balance, carbon released, tropical dry dipterocarp forest, biomass bunring.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2109
246 Fermentable Sugars from Palm Empty Fruit Bunch Biomass for Bioethanol Production

Authors: U. A. Asli, H. Hamid, Z.A. Zakaria, A. N. Sadikin, R. Rasit

Abstract:

This study investigated the effect of a dilute acid, lime and ammonia aqueous pretreatment on the fermentable sugars conversion from empty fruit bunch (EFB) biomass. The dilute acid treatment was carried out in an autoclave, at 121ºC with 4% of sulfuric acid. In the lime pretreatment, 3 wt % of calcium hydroxide was used, whereas the third method was done by soaking EFB with 28% ammonia solution. The EFB biomass was then subjected to a two-stage-acid hydrolysis process. Subsequently, the hydrolysate was fermented by using instant baker’s yeast to produce bioethanol. The highest glucose yield was 890 mg/g of biomass, obtained from the sample which underwent lime pretreatment. The highest bioethanol yield of 6.1mg/g of glucose was achieved from acid pretreatment. This showed that the acid pretreatment gave the most fermentable sugars compared to the other two pretreatments.

Keywords: Bioethanol, biomass, empty fruit bunch (EFB), fermentable sugars.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3498
245 Comparison of MODIS-Based Rice Extent Map and Landsat-Based Rice Classification Map in Determining Biomass Energy Potential of Rice Hull in Nueva Ecija, Philippines

Authors: Klathea Sevilla, Marjorie Remolador, Bryan Baltazar, Imee Saladaga, Loureal Camille Inocencio, Ma. Rosario Concepcion Ang

Abstract:

The underutilization of biomass resources in the Philippines, combined with its growing population and the rise in fossil fuel prices confirms demand for alternative energy sources. The goal of this paper is to provide a comparison of MODIS-based and Landsat-based agricultural land cover maps when used in the estimation of rice hull’s available energy potential. Biomass resource assessment was done using mathematical models and remote sensing techniques employed in a GIS platform.

Keywords: Biomass, geographic information system, GIS, renewable energy.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1838
244 Thermogravimetry Study on Pyrolysis of Various Lignocellulosic Biomass for Potential Hydrogen Production

Authors: S.S. Abdullah, S. Yusup, M.M. Ahmad, A. Ramli, L. Ismail

Abstract:

This paper aims to study decomposition behavior in pyrolytic environment of four lignocellulosic biomass (oil palm shell, oil palm frond, rice husk and paddy straw), and two commercial components of biomass (pure cellulose and lignin), performed in a thermogravimetry analyzer (TGA). The unit which consists of a microbalance and a furnace flowed with 100 cc (STP) min-1 Nitrogen, N2 as inert. Heating rate was set at 20⁰C min-1 and temperature started from 50 to 900⁰C. Hydrogen gas production during the pyrolysis was observed using Agilent Gas Chromatography Analyzer 7890A. Oil palm shell, oil palm frond, paddy straw and rice husk were found to be reactive enough in a pyrolytic environment of up to 900°C since pyrolysis of these biomass starts at temperature as low as 200°C and maximum value of weight loss is achieved at about 500°C. Since there was not much different in the cellulose, hemicelluloses and lignin fractions between oil palm shell, oil palm frond, paddy straw and rice husk, the T-50 and R-50 values obtained are almost similar. H2 productions started rapidly at this temperature as well due to the decompositions of biomass inside the TGA. Biomass with more lignin content such as oil palm shell was found to have longer duration of H2 production compared to materials of high cellulose and hemicelluloses contents.

Keywords: biomass, decomposition, hydrogen, lignocellulosic, thermogravimetry

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1997
243 Modeling Moisture and Density Behaviors of Wood in Biomass Torrefaction Environments

Authors: Gun Yung Go, Man Young Kim

Abstract:

Worldwide interests for the renewable energy are increasing due to environmental and climate changes from traditional petroleum related energy sources. To account for these social needs, ligneous biomass energy is considered as one of the environmentally friend energy solutions. The wood torrefaction process is a feasible method to improve the properties of the biomass fuel and makes the wood have low moisture, lower smoke emission and increased heating value. In this work, therefore, the moisture evaporation model which largely affects energy efficiency of ligneous biomass through moisture contents and heating value relative to its weight is studied with numerical modeling approach by analyzing the effects of torrefaction furnace temperature. The results show that the temperature and moisture fraction of wood decrease by increasing the furnace temperature. When the torrefaction temperature is lower than 423K, there were little changes of the moisture fraction in the wood. Also, it can be found that charcoal is produced more slowly when the torrefaction temperature is lower than 573K.

Keywords: Modeling, Torrefaction, Biomass, Moisture Fraction, Charcoal.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1303
242 Parametric Analysis on Hydrogen Production using Mixtures of Pure Cellulosic and Calcium Oxide

Authors: N.A. Rashidi, S. Yusup, M.M. Ahmad

Abstract:

As the fossil fuels kept on depleting, intense research in developing hydrogen (H2) as the alternative fuel has been done to cater our tremendous demand for fuel. The potential of H2 as the ultimate clean fuel differs with the fossil fuel that releases significant amounts of carbon dioxide (CO2) into the surrounding and leads to the global warming. The experimental work was carried out to study the production of H2 from palm kernel shell steam gasification at different variables such as heating rate, steam to biomass ratio and adsorbent to biomass ratio. Maximum H2 composition which is 61% (volume basis) was obtained at heating rate of 100oCmin-1, steam/biomass of 2:1 ratio, and adsorbent/biomass of 1:1 ratio. The commercial adsorbent had been modified by utilizing the alcoholwater mixture. Characteristics of both adsorbents were investigated and it is concluded that flowability and floodability of modified CaO is significantly improved.

Keywords: Biomass gasification, Calcium oxide, Carbon dioxide capture, Sorbent flowability

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1602
241 Effect of Equivalence Ratio on Performance of Fluidized Bed Gasifier Run with Sized Biomass

Authors: J. P. Makwana, A. K. Joshi, Rajesh N. Patel, Darshil Patel

Abstract:

Recently, fluidized bed gasification becomes an attractive technology for power generation due to its higher efficiency. The main objective pursued in this work is to investigate the producer gas production potential from sized biomass (sawdust and pigeon pea) by applying the air gasification technique. The size of the biomass selected for the study was in the range of 0.40-0.84 mm. An experimental study was conducted using a fluidized bed gasifier with 210 mm diameter and 1600 mm height. During the experiments, the fuel properties and the effects of operating parameters such as gasification temperatures 700 to 900 °C, equivalence ratio 0.16 to 0.46 were studied. It was concluded that substantial amounts of producer gas (up to 1110 kcal/m3) could be produced utilizing biomass such as sawdust and pigeon pea by applying this fluidization technique. For both samples, the rise of temperature till 900 °C and equivalence ratio of 0.4 favored further gasification reactions and resulted into producer gas with calorific value 1110 kcal/m3.

Keywords: Sized biomass, fluidized bed gasifier, equivalence ratio, temperature profile, gas composition.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1310
240 Use of Biomass as Co-Fuel in Briquetting of Low-Rank Coal: Strengthen the Energy Supply and Save the Environment

Authors: Mahidin, Yanna Syamsuddin, Samsul Rizal

Abstract:

In order to fulfill world energy demand, several efforts have been done to look for new and renewable energy candidates to substitute oil and gas. Biomass is one of new and renewable energy sources, which is abundant in Indonesia. Palm kernel shell is a kind of biomass discharge from palm oil industries as a waste. On the other hand, Jatropha curcas that is easy to grow in Indonesia is also a typical energy source either for bio-diesel or biomass. In this study, biomass was used as co-fuel in briquetting of low-rank coal to suppress the release of emission (such as CO, NOx and SOx) during coal combustion. Desulfurizer, CaO-base, was also added to ensure the SOx capture is effectively occurred. Ratio of coal to palm kernel shell (w/w) in the bio-briquette were 50:50, 60:40, 70:30, 80:20 and 90:10, while ratio of calcium to sulfur (Ca/S) in mole/mole were 1:1; 1.25:1; 1.5:1; 1.75:1 and 2:1. The bio-briquette then subjected to physical characterization and combustion test. The results show that the maximum weight loss in the durability measurement was ±6%. In addition, the highest stove efficiency for each desulfurizer was observed at the coal/PKS ratio of 90:10 and Ca/S ratio of 1:1 (except for the scallop shell desulfurizer that appeared at two Ca/S ratios; 1.25:1 and 1.5:1, respectively), i.e. 13.8% for the lime; 15.86% for the oyster shell; 14.54% for the scallop shell and 15.84% for the green mussel shell desulfurizers.

Keywords: Biomass, low-rank coal, bio-briquette, new and renewable energy, palm kernel shell.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2257
239 Effect of Partial Rootzone Drying on Growth, Yield and Biomass Partitioning of a Soilless Tomato Crop

Authors: N. Affi, A. El Fadl, M. El Otmani, M.C. Benismail, L.M. Idrissi

Abstract:

The object of the present research was to assess the effects of partial rootzone drying (PRD) on tomato growth, productivity, biomass allocation and water use efficiency (WUE). Plants were grown under greenhouse, on a sand substrate. Three treatments were applied: a control that was fully and conventionally irrigated, PRD-70 and PRD-50 in which, respectively, 70% and 50% of water requirements were supplied using PRD. Alternation of irrigation between the two root halves took place each three days. The Control produces the highest total yield (252tons/ha). In terms of fruit number, PRD-50 showed 23% and 16% less fruits than PRD-70 and control, respectively. Fruit size was affected by treatment with PRD-50 treatment producing 66% and 53% more class 3 fruits than, control and PRD-70, respectively. For plant growth, the difference was not significant when comparing control to PRD-70 but was significant when comparing PRD-70 and control to PRD-50. No effect was on total biomass but root biomass was higher for stressed plants compared to control. WUE was 66% and 27% higher for PRD-50 and PRD-70 respectively compared to control.

Keywords: Biomass, growth, partial rootzone drying, water use efficiency yield.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1833
238 Conditions of the Anaerobic Digestion of Biomass

Authors: N. Boontian

Abstract:

Biological conversion of biomass to methane has received increasing attention in recent years. Grasses have been explored for their potential anaerobic digestion to methane. In this review, extensive literature data have been tabulated and classified. The influences of several parameters on the potential of these feedstocks to produce methane are presented. Lignocellulosic biomass represents a mostly unused source for biogas and ethanol production. Many factors, including lignin content, crystallinity of cellulose, and particle size, limit the digestibility of the hemicellulose and cellulose present in the lignocellulosic biomass. Pretreatments have used to improve the digestibility of the lignocellulosic biomass. Each pretreatment has its own effects on cellulose, hemicellulose and lignin, the three main components of lignocellulosic biomass. Solidstate anaerobic digestion (SS-AD) generally occurs at solid concentrations higher than 15%. In contrast, liquid anaerobic digestion (AD) handles feedstocks with solid concentrations between 0.5% and 15%. Animal manure, sewage sludge, and food waste are generally treated by liquid AD, while organic fractions of municipal solid waste (OFMSW) and lignocellulosic biomass such as crop residues and energy crops can be processed through SS-AD. An increase in operating temperature can improve both the biogas yield and the production efficiency, other practices such as using AD digestate or leachate as an inoculant or decreasing the solid content may increase biogas yield but have negative impact on production efficiency. Focus is placed on substrate pretreatment in anaerobic digestion (AD) as a means of increasing biogas yields using today’s diversified substrate sources.

Keywords: Anaerobic digestion, Lignocellulosic biomass, Methane production, Optimization, Pretreatment.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3903
237 BasWilCalc – Basket Willow (Salix viminalis) Biomass Yield Calculator

Authors: Wiesław Szulczewski, Wojciech Jakubowski, Andrzej Żyromski, Małgorzata Biniak-Pieróg

Abstract:

The aim of the paper was to elaborate a novel calculator BasWilCalc, that allows to estimate the actual amount of biomass on the basket willow plantations. The proposed method is based on the results of field experiment conducted during years  2011-2013 on basket willow plantation in the south-western part of Poland. As input data the results of destructive measurements of the diameter, length and weight of willow stems and non-destructive biometric measurements of diameter in the middle of stems and their length during the growing season performed at weekly intervals were used. Performed analysis enabled to develop the algorithm which, due to the fact that energy plantations are of known and constant planting structure, allows to estimate the actual amount of willow basket biomass on the plantation with a given probability and accuracy specified by the model, based on the number of stems measured and the age of the plantation.

Keywords: Basket willow (Salix viminalis) biomass, biometric measurements, yield, biomass calculator.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1462
236 Characterization of Chemically Modified Biomass as a Coating Material for Controlled Released Urea by Contact Angle Measurement

Authors: Nur Zahirah Zulhaimi, KuZilati KuShaari, Zakaria Man

Abstract:

Controlled release urea has become popular in agricultural industry as it helps to solve environmental issues and increase crop yield. Recently biomass was identified to replace the polymer used as a coating material in the conventional coated urea. In this paper spreading and contact angle of biomass droplet (lignin, cellulose and clay) on urea surface are investigated experimentally. There were two tests were conducted, sessile drop for contact angle measurement and pendant drop for contact angle measurement. A different concentration of biomass droplet was released from 30 mm above a substrate. Glass was used as a controlled substrate. Images were recorded as soon as the droplet impacted onto the urea before completely adsorb into the urea. Digitized droplets were then used to identify the droplet-s surface tension and contact angle. There is large difference observed between the low surface tension and high surface tension liquids, where the wetting and spreading diameter is higher for lower surface tension. From the contact angle results, the data showed that the biomass coating films were possible as wetting liquid (θ < 90º). Contact angle of biomass coating material gives good indication for the wettablity of a liquid on urea surface.

Keywords: Fluid, Dynamics, Droplet, Spreading, Contact Angle, Surface Tension.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2147