Search results for: salt spray
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 986

Search results for: salt spray

656 Sensory and Microbial Properties of Fresh and Canned Calocybe indica

Authors: Apotiola Z. O., Anyakorah C. I., Kuforiji O. O.

Abstract:

Sensory and microbial properties of fresh and canned Calocybe indica (milky mushroom) were evaluated. The mushroom was grown under a controlled environment with hardwood (Cola nitida) and rice bran substrate (4:1) canned in a brine solution of salt and citric acid. Analysis was carried out using standard methods. The overall acceptability ranged between 5.62 and 6.50, with sample S30 adjudged the best. In all, significant differences p<0.01 exist in the panelist judgment. Thus, the incorporation of salt and citric acid at 3.5g and 1.5g, respectively, improved sensory attributes such as texture, aroma, color, and overall acceptability. There was no coliform and fungi growth on the samples throughout the storage period. The bacterial count, on the other hand, was observed only in the fifth and sixth week of the storage period which varied between 0.2 to 0.9 x 103 cfu/g. The highest value was observed in sample S20 of the sixth week of storage, while the lowest value was recorded in sample S30 of the sixth week of storage. Based on 16S rRNA gene sequencing, bacterial species were taxonomically confirmed as Bacillus thuringiensis. The percentile compositions and Sequence ID of the bacterial species in the mushroom was 90%.

Keywords: bacterial count, microbial property, sensory, sawdust, texture

Procedia PDF Downloads 37
655 Effect of Weathering on the Mineralogy and Geochemistry of Sediments of the Hyper Saline Urmia Salt Lake, Iran

Authors: Samad Alipour, Khadije Mosavi Onlaghi

Abstract:

Urmia Salt Lake (USL) is a hypersaline lake in the northwest of Iran. It contains halite as main dissolved and precipitated mineral and the major mineral mixed with lake bed sediments. Other detrital minerals such as calcite, aragonite, dolomite, quartz, feldspars, augite are forming lake sediments. This study examined the impact of weathering of this sediments collected from 1.5 meters depth and augite placers. The study indicated that weathering of tephritic and adakite rocks of the Islamic Island at the immediate boundary of the lake play a main control of lake bed sediments and has produced a large volume of augite placer along the lake bank. Weathering increases from south to toward north with increasing distance from Islamic Island. Geochemistry of lake sediments demonstrated the enrichment of MgO, CaO, Sr with an elevated anomaly of Eu, possibly due to surface absorbance of Mn and Fe associated Sr elevation originating from adakite volcanic rocks in the vicinity of the lake basin. The study shows the local geology is the major factor in origin of lake sediments than chemical and biochemical produced mineral during diagenetic processes.

Keywords: Urmia Lake, weathering, mineralogy, augite, Iran

Procedia PDF Downloads 197
654 Investigation of Electrochemical, Morphological, Rheological and Mechanical Properties of Nano-Layered Graphene/Zinc Nanoparticles Incorporated Cold Galvanizing Compound at Reduced Pigment Volume Concentration

Authors: Muhammad Abid

Abstract:

The ultimate goal of this research was to produce a cold galvanizing compound (CGC) at reduced pigment volume concentration (PVC) to protect metallic structures from corrosion. The influence of the partial replacement of Zn dust by nano-layered graphene (NGr) and Zn metal nanoparticles on the electrochemical, morphological, rheological, and mechanical properties of CGC was investigated. EIS was used to explore the electrochemical nature of coatings. The EIS results revealed that the partial replacement of Zn by NGr and Zn nanoparticles enhanced the cathodic protection at reduced PVC (4:1) by improving the electrical contact between the Zn particles and the metal substrate. The Tafel scan was conducted to support the cathodic behaviour of the coatings. The sample formulated solely with Zn at PVC 4:1 was found to be dominated in physical barrier characteristics over cathodic protection. By increasing the concentration of NGr in the formulation, the corrosion potential shifted towards a more negative side. The coating with 1.5% NGr showed the highest galvanic action at reduced PVC. FE-SEM confirmed the interconnected network of conducting particles. The coating without NGr and Zn nanoparticles at PVC 4:1 showed significant gaps between the Zn dust particles. The novelty was evidenced when micrographs showed the consistent distribution of NGr and Zn nanoparticles all over the surface, which acted as a bridge between spherical Zn particles and provided cathodic protection at a reduced PVC. The layered structure of graphene also improved the physical shielding effect of the coatings, which limited the diffusion of electrolytes and corrosion products (oxides/hydroxides) into the coatings, which was reflected by the salt spray test. The rheological properties of coatings showed good liquid/fluid properties. All the coatings showed excellent adhesion but had different strength values. A real-time scratch resistance assessment showed all the coatings had good scratch resistance.

Keywords: protective coatings, anti-corrosion, galvanization, graphene, nanomaterials, polymers

Procedia PDF Downloads 64
653 Optimization of Process Parameters using Response Surface Methodology for the Removal of Zinc(II) by Solvent Extraction

Authors: B. Guezzen, M.A. Didi, B. Medjahed

Abstract:

A factorial design of experiments and a response surface methodology were implemented to investigate the liquid-liquid extraction process of zinc (II) from acetate medium using the 1-Butyl-imidazolium di(2-ethylhexyl) phosphate [BIm+][D2EHP-]. The optimization process of extraction parameters such as the initial pH effect (2.5, 4.5, and 6.6), ionic liquid concentration (1, 5.5, and 10 mM) and salt effect (0.01, 5, and 10 mM) was carried out using a three-level full factorial design (33). The results of the factorial design demonstrate that all these factors are statistically significant, including the square effects of pH and ionic liquid concentration. The results showed that the order of significance: IL concentration > salt effect > initial pH. Analysis of variance (ANOVA) showing high coefficient of determination (R2 = 0.91) and low probability values (P < 0.05) signifies the validity of the predicted second-order quadratic model for Zn (II) extraction. The optimum conditions for the extraction of zinc (II) at the constant temperature (20 °C), initial Zn (II) concentration (1mM) and A/O ratio of unity were: initial pH (4.8), extractant concentration (9.9 mM), and NaCl concentration (8.2 mM). At the optimized condition, the metal ion could be quantitatively extracted.

Keywords: ionic liquid, response surface methodology, solvent extraction, zinc acetate

Procedia PDF Downloads 347
652 A Review of Atomization Mechanisms Used for Spray Flash Evaporation: Their Effectiveness and Proposal of Rotary Bell Atomizer for Flashing Application

Authors: Murad A. Channa, Mehdi Khiadani. Yasir Al-Abdeli

Abstract:

Considering the severity of water scarcity around the world and its widening at an alarming rate, practical improvements in desalination techniques need to be engineered at the earliest. Atomization is the major aspect of flashing phenomena, yet it has been paid less attention to until now. There is a need to test efficient ways of atomization for the flashing process. Flash evaporation together with reverse osmosis is also a commercially matured desalination technique commonly famous as Multi-stage Flash (MSF). Even though reverse osmosis is massively practical, it is not economical or sustainable compared to flash evaporation. However, flashing evaporation has its drawbacks as well such as lower efficiency of water production per higher consumption of power and time. Flash evaporation is simply the instant boiling of a subcooled liquid which is introduced as droplets in a well-maintained negative environment. This negative pressure inside the vacuum increases the temperature of the liquid droplets far above their boiling point, which results in the release of latent heat, and the liquid droplets turn into vapor which is collected to be condensed back into an impurity-free liquid in a condenser. Atomization is the main difference between pool and spray flash evaporation. Atomization is the heart of the flash evaporation process as it increases the evaporating surface area per drop atomized. Atomization can be categorized into many levels depending on its drop size, which again becomes crucial for increasing the droplet density (drop count) per given flow rate. This review comprehensively summarizes the selective results relating to the methods of atomization and their effectiveness on the evaporation rate from earlier works to date. In addition, the reviewers propose using centrifugal atomization for the flashing application, which brings several advantages viz ultra-fine droplets, uniform droplet density, and the swirling geometry of the spray with kinetically more energetic sprays during their flight. Finally, several challenges of using rotary bell atomizer (RBA) and RBA Sprays inside the chamber have been identified which will be explored in detail. A schematic of rotary bell atomizer (RBA) integration with the chamber has been designed. This powerful centrifugal atomization has the potential to increase potable water production in commercial multi-stage flash evaporators, where it would be preferably advantageous.

Keywords: atomization, desalination, flash evaporation, rotary bell atomizer

Procedia PDF Downloads 46
651 Effect of Burdock Root Extract Concentration on Physiochemical Property of Coated Jasmine Rice by Using Top-Spay Fluidized Bed Coating Technique

Authors: Donludee Jaisut, Norihisa Kato, Thanutchaporn Kumrungsee, Kiyoshi Kawai, Somkiat Prachayawarakorn, Patchalee Tungtrakul

Abstract:

Jasmine Rice is a principle food of Thai people. However, glycemic index of jasmine rice is in high level, risk of type II diabetes after consuming. Burdock root is a good source of non-starch polysaccharides such as inulin. Inulin acts as prebiotic and helps reduce blood-sugar level. The purpose of this research was to reduce digestion rate of jasmine rice by coating burdock root extract on rice surface, using top-spay fluidized bed coating technique. Coating experiments were performed by spraying burdock root solution onto Jasmine rice kernels (Khao Dawk Mali-105; KDML), which had an initial moisture content of 11.6% wet basis, suspended in the fluidized bed. The experimental conditions were: solution spray rates of 31.7 mL/min, atomization pressure of 1.5 bar, spray time of 10 min, time of drying after spraying of 30 s, superficial air velocity of 3.2 m/s and drying temperatures of 60°C. The coated rice quality was evaluated in terms of the moisture content, texture, whiteness and digestion rate. The results showed that initial and final moisture contents of samples were the same in concentration 8% (v/v) and 10% (v/v). The texture was insignificantly changed from that of uncoated sample. The whiteness values were varied on concentration of burdock root extract. Coated samples were slower digested.

Keywords: burdock root, digestion, drying, rice

Procedia PDF Downloads 269
650 Effect of Barium Doping on Structural, Morphological, Optical, and Photocatalytic Properties of Sprayed ZnO Thin Films

Authors: Halima Djaaboube, Redha Aouati, Ibtissem Loucif, Yassine Bouachiba, Mouad Chettab, Adel Taabouche, Sihem Abed, Salima Ouendadji, Abderrahmane Bouabellou

Abstract:

Thin films of pure and barium-doped zinc oxide (ZnO) were prepared using spray pyrolysis process. The films were deposited on glass substrates at 450°C. The different samples are characterized by X-ray diffraction (XRD) and UV-Vis spectroscopy. X-ray diffraction patterns reveal the formation of a single ZnO Wurtzite structure and the good crystallinity of the films. The substitution of Ba ions influences the texture of the layers and makes the (002) plane a preferential growth plane. At concentrations below 6% Ba, the hexagonal structure of ZnO undergoes compressive stresses due to barium ions which have a radius twice of the Zn ions. This result leads to the decrees of a and c parameters and therefore the volume of the unit cell. This result is confirmed by the decrease in the number of crystallites and the increase in the size of the crystallites. At concentrations above 6%, barium substitutes the zinc atom and modifies the structural parameters of the thin layers. The bandgap of ZnO films decreased with increasing doping, this decrease is probably due to the 4d orbitals of the Ba atom due to the sp-d spin-exchange interactions between the band electrons and the localized d-electrons of the substituted Ba ion. Although, the Urbache energy undergoes an increase which implies the creation of energy levels below the conduction band and decreases the band gap width. The photocatalytic activity of ZnO doped 9% Ba was evaluated by the photodegradation of methylene blue under UV irradiation.

Keywords: barium, doping, photodegradation, spray pyrolysis, ZnO.

Procedia PDF Downloads 88
649 Reviving the Past, Enhancing the Future: Preservation of Urban Heritage Connectivity as a Tool for Developing Liveability in Historical Cities in Jordan, Using as Salt City as a Case Study

Authors: Sahar Yousef, Chantelle Niblock, Gul Kacmaz

Abstract:

Salt City, in the context of Jordan’s heritage landscape, is a significant case to explore when it comes to the interaction between tangible and intangible qualities of liveable cities. Most city centers, including Jerash, Salt, Irbid, and Amman, are historical locations. Six of these extraordinary sites were designated UNESCO World Heritage Sites. Jordan is widely acknowledged as a developing country characterized by swift urbanization and unrestrained expansion that exacerbate the challenges associated with the preservation of historic urban areas. The aim of this study is to conduct an examination and analysis of the existing condition of heritage connectivity within heritage city centers. This includes outdoor staircases, pedestrian pathways, footpaths, and other public spaces. Case study-style analysis of the urban core of As-Salt is the focus of this investigation. Salt City is widely acknowledged for its substantial tangible and intangible cultural heritage and has been designated as ‘The Place of Tolerance and Urban Hospitality’ by UNESCO since 2021. Liveability in urban heritage, particularly in historic city centers, incorporates several factors that affect our well-being; its enhancement is a critical issue in contemporary society. The dynamic interaction between humans and historical materials, which serves as a vehicle for the expression of their identity and historical narrative, constitutes preservation that transcends simple conservation. This form of engagement enables people to appreciate the diversity of their heritage recognising their previous and planned futures. Heritage preservation is inextricably linked to a larger physical and emotional context; therefore, it is difficult to examine it in isolation. Urban environments, including roads, structures, and other infrastructure, are undergoing unprecedented physical design and construction requirements. Concurrently, heritage reinforces a sense of affiliation with a particular location or space and unifies individuals with their ancestry, thereby defining their identity. However, a considerable body of research has focused on the conservation of heritage buildings in a fragmented manner without considering their integration within a holistic urban context. Insufficient attention is given to the significance of the physical and social roles played by the heritage staircases and baths that serve as connectors between these valued historical buildings. In doing so, the research uses a methodology that is based on consensus. Given that liveability is considered a complex matter with several dimensions. The discussion starts by making initial observations on the physical context and societal norms inside the urban center while simultaneously establishing the definitions of liveability and connectivity and examining the key criteria associated with these concepts. Then, identify the key elements that contribute to liveable connectivity within the framework of urban heritage in Jordanian city centers. Some of the outcomes that will be discussed in the presentation are: (1) There is not enough connectivity between heritage buildings as can be seen, for example, between buildings in Jada and Qala'. (2) Most of the outdoor spaces suffer from physical issues that hinder their use by the public, like in Salalem. (3) Existing activities in the city center are not well attended because of lack of communication between the organisers and the citizens.

Keywords: connectivity, Jordan, liveability, salt city, tangible and intangible heritage, urban heritage

Procedia PDF Downloads 37
648 Isolation of Nitrosoguanidine Induced NaCl Tolerant Mutant of Spirulina platensis with Improved Growth and Phycocyanin Production

Authors: Apurva Gupta, Surendra Singh

Abstract:

Spirulina spp., as a promising source of many commercially valuable products, is grown photo autotrophically in open ponds and raceways on a large scale. However, the economic exploitation in an open system seems to have been limited because of lack of multiple stress-tolerant strains. The present study aims to isolate a stable stress tolerant mutant of Spirulina platensis with improved growth rate and enhanced potential to produce its commercially valuable bioactive compounds. N-methyl-n'-nitro-n-nitrosoguanidine (NTG) at 250 μg/mL (concentration permitted 1% survival) was employed for chemical mutagenesis to generate random mutants and screened against NaCl. In a preliminary experiment, wild type S. platensis was treated with NaCl concentrations from 0.5-1.5 M to calculate its LC₅₀. Mutagenized colonies were then screened for tolerance at 0.8 M NaCl (LC₅₀), and the surviving colonies were designated as NaCl tolerant mutants of S. platensis. The mutant cells exhibited 1.5 times improved growth against NaCl stress as compared to the wild type strain in control conditions. This might be due to the ability of the mutant cells to protect its metabolic machinery against inhibitory effects of salt stress. Salt stress is known to adversely affect the rate of photosynthesis in cyanobacteria by causing degradation of the pigments. Interestingly, the mutant cells were able to protect its photosynthetic machinery and exhibited 4.23 and 1.72 times enhanced accumulation of Chl a and phycobiliproteins, respectively, which resulted in enhanced rate of photosynthesis (2.43 times) and respiration (1.38 times) against salt stress. Phycocyanin production in mutant cells was observed to enhance by 1.63 fold. Nitrogen metabolism plays a vital role in conferring halotolerance to cyanobacterial cells by influx of nitrate and efflux of Na+ ions from the cell. The NaCl tolerant mutant cells took up 2.29 times more nitrate as compared to the wild type and efficiently reduce it. Nitrate reductase and nitrite reductase activity in the mutant cells also improved by 2.45 and 2.31 times, respectively against salt stress. From these preliminary results, it could be deduced that enhanced nitrogen uptake and its efficient reduction might be a reason for adaptive and halotolerant behavior of the S. platensis mutant cells. Also, the NaCl tolerant mutant of S. platensis with significant improved growth and phycocyanin accumulation compared to the wild type can be commercially promising.

Keywords: chemical mutagenesis, NaCl tolerant mutant, nitrogen metabolism, photosynthetic machinery, phycocyanin

Procedia PDF Downloads 150
647 Preservation of Sensitive Biological Products: An Insight into Conventional and Upcoming Drying Techniques

Authors: Jannika Dombrowski, Sabine Ambros, Ulrich Kulozik

Abstract:

Several drying techniques are used to preserve sensitive substances such as probiotic lactic acid bacteria. With the aim to better understand differences between these processes, this work gives new insights into structural variations resulting from different preservation methods and their impact on product quality and storage stability. Industrially established methods (freeze drying, spray drying) were compared to upcoming vacuum, microwave-freeze, and microwave-vacuum drying. For freeze and microwave-freeze dried samples, survival and activity maintained 100%, whereas vacuum and microwave-vacuum dried cultures achieved 30-40% survival. Spray drying yielded in lowest viability. The results are directly related to temperature and oxygen content during drying. Interestingly, most storage stable products resulted from vacuum and microwave-vacuum drying due to denser product structures as determined by helium pycnometry and SEM images. Further, lower water adsorption velocities were responsible for lower inactivation rates. Concluding, resulting product structures as well as survival rates and storage stability mainly depend on the type of water removal instead of energy input. Microwave energy compared to conductive heating did not lead to significant differences regarding the examined factors. Correlations could be proven for three investigated microbial strains. The presentation will be completed by an overview on the energy efficiency of the presented methods.

Keywords: drying techniques, energy efficiency, lactic acid bacteria, probiotics, survival rates, structure characterization

Procedia PDF Downloads 216
646 Yield Enhancement and Reduced Nutrient Removal by Weeds in Winter Irrigated Cotton Using Potassium Salt Based Glyphosate

Authors: N. Viji, K. Siddeswaran

Abstract:

Field experiment was conducted at Eastern Block farm, Department of Farm Management, Tamil Nadu Agricultural University, Coimbatore during winter season of 2011-2012 to evaluate potassium salt based glyphosate (Roundup Crop Shield 460 SL) with and without intercultural operations on seed cotton yield and weed nutrient removal in irrigated cotton. The experiment was laid out in Randomized Block Design with treatments replicated thrice. The treatments consisted of POE glyphosate (Roundup Crop Shield 460 SL) at 1350 (T1), 1800 (T2), 2250 (T3) g a.e. ha-1, 1800 g a.e. ha-1 + IC (T4), PE pendimethalin at 750 g a.i. ha-1 + IC (T5), HW at 35 and 70 DAS + IC (T6), HWW at 35 and 70 DAS + IC (T7), PWW at 35 and 70 DAS + IC (T8), HW at 25 and 45 DAS (T9) and Unweeded control (T10). Among the weed management methods, decreased nutrient removal by weeds were observed with POE glyphosate at 1800 g a.e. ha-1 + IC which was comparable with PE pendimethalin at 750 g a.i. ha-1 + IC. Higher seed cotton yield was obtained with POE glyphosate at 1800 g a.e. ha-1 at 35 and 70 DAS with + IC at 45 and 55 DAS which was comparable with PE pendimethalin at 750 g a.i. ha-1 + IC at 45 and 55 DAS. Comparing treatments without intercultural operation, intercultural operation carried out treatments performed better and recorded more seed cotton yield.

Keywords: cotton, weed, glyphosate, nutrient

Procedia PDF Downloads 609
645 Cold Spray High Entropy Alloy Coating Surface Microstructural Characterization and Mechanical Testing

Authors: Raffaella Sesana, Nazanin Sheibanian, Luca Corsaro, Sedat Özbilen, Rocco Lupoi, Francesco Artusio

Abstract:

High Entropy Alloy (HEA) coatings of Al0.1-0.5CoCrCuFeNi and MnCoCrCuFeNi on Mg substrates were prepared from mechanically alloyed HEA powder feedstocks and at three different Cold Spray (CS) process gas (N2) temperatures (650, 750 and 850°C). Mechanically alloyed and cold-sprayed HEA coatings were characterized by macro photography, OM, SEM+EDS study, micro-hardness testing, roughness, and porosity measurements. As a result of mechanical alloying (MA), harder particles are deformed and fractured. The particles in the Cu-rich region were coarser and more globular than those in the A1 phase, which is relatively soft and ductile. In addition to the A1 particles, there were some separate Cu-rich regions. Due to the brittle nature of the powder and the acicular shape, Mn-HEA powder exhibited a different trend with smaller particle sizes. It is observed that MA results in a loose structure characterized by many gaps, cracks, signs of plastic deformation, and small particles attached to the surface of the particle. Considering the experimental results obtained, it is not possible to conclude that the chemical composition of the high entropy alloy influences the roughness of the coating. It has been observed that the deposited volume increases with temperature only in the case of Al0.1 and Mg-based HEA, while for the rest of the Al-based HEA, there are no noticeable changes. There is a direct correlation between micro-hardness and the chemical composition of a coating: the micro-hardness of a coating increases as the percentage of aluminum increases in the sample. Compared to the substrate, the coating has a much higher hardness, and the hardness measured at the interface is intermediate.

Keywords: characterisation, cold spraying, HEA coatings, SEM+EDS

Procedia PDF Downloads 36
644 Traditional Dyeing of Silk with Natural Dyes by Eco-Friendly Method

Authors: Samera Salimpour Abkenar

Abstract:

In traditional dyeing of natural fibers with natural dyes, metal salts are commonly used to increase color stability. This method always carries the risk of environmental pollution (contamination of arable soils and fresh groundwater) due to the release of dyeing effluents containing large amounts of metal. Therefore, researchers are always looking for new methods to obtain a green dyeing system. In this research, the use of the enzymatic dyeing method to prevent environmental pollution with metals and reduce production costs has been proposed. After degumming and bleaching, raw silk fabrics were dyed with natural dyes (Madder and Sumac) by three methods (pre-mordanting with a metal salt, one-step enzymatic dyeing, and two-step enzymatic dyeing). Results show that silk dyed with natural dyes by the enzymatic method has higher color strength and colorfastness than the pretreated with a metal salt. Also, the amount of remained dyes in the dyeing wastewater is significantly reduced by the enzymatic method. It is found that the enzymatic dyeing method leads to improvement of dye absorption, color strength, soft hand, no change in color shade, low production costs (due to low dyeing temperature), and a significant reduction in environmental pollution.

Keywords: eco-friendly, natural dyes, silk, traditional dyeing

Procedia PDF Downloads 163
643 Mechanical Strengths of Self-Compacting Mortars Prepared with the Pozzolanic Cement in Aggressive Environments

Authors: M. Saidi, I. Djefour, F. Ait Medjber, A. Melouane, A. Gacem

Abstract:

The objective of this research is to study the physical and mechanical properties and durability of self-compacting mortars prepared by substituting a part of cement up to a percentage of 30% pozzolan according to different Blaine specific surface area (SSB1=7000 cm2/g and SSB=9000 cm2/g)). Order to evaluate durability, mortars were subjected to chemical attacks in various aggressive environments, a solution of a mixture of nitric acid and ammonium nitrate (HNO3 + NH4NO3) and a magnesium sulfate salt solution (MgSO4)) with a concentration of 10%, for a period of one month. This study is complemented by a comparative study of the durability of mortars elaborated with sulphate resistant cement (SRC). The results show that these mortars develop long-term, mechanical and chemical resistance better than mortars based Portland cement with 5% gypsum (CEM 1) and SRC. We found that the mass losses are lowest in mortars elaborated with pozzolanic cement (30% substitution with SSB2) in both of chemical attack solutions (3.28% in the solution acid and 1.16% in the salt solution) and the compressive strength gains of 14.68% and 8.5% respectively in the two media. This is due to the action of pozzolan which fixes portlandite to form hydrated calcium silicate (CSH) from the hydration of tricalcic silicate (C3S).

Keywords: aggressive environments, durability, mechanical strengths, pozzolanic cement, self-compacting mortar

Procedia PDF Downloads 210
642 Detection of Transgenes in Cotton (Gossypium hirsutum L.) by using Biotechnology/Molecular Biological Techniques

Authors: Ahmad Ali Shahid, M Shakil Shaukat

Abstract:

Agriculture is the backbone of economy of Pakistan and Cotton is the major agricultural export and supreme source of raw fiber for our textile industry. To combat against the developing resistance in the target insects and combating these challenges wholesomely, a novel combination of pyramided/stacked genes was conceptualized and later realized, through the means of biotechnology i.e., transformation of three genes namely, Cry1Ac, Cry2A, and EPSP synthase (glyphosate tolerant) genes in the locally cultivated cotton variety. The progenies of the transformed plants were successfully raised and screened under the tunnel conditions for two generations and the present study focused on the screening of plants which were confirmed for containing all of these three genes and their expressions. Initially, the screening was done through glyphosate spray assay and the plants which were healthy and showed no damage on leaves were selected after 07 days of spray. In the laboratory, the DNA of these plants were isolated and subjected to amplification of the three genes. Thus, seventeen out of twenty were confirmed positive for Cry1Ac gene and ten out of twenty were positive for Cry2A gene and all twenty were positive for presence of EPSP synthase gene. Then, the ten plant samples which were confirmed with presence of all three genes were subjected to expression analysis of these proteins through ELISA. The results showed that eight out of ten plants were actively expressing the three transgenes. Real-time PCR was also done to quantify the expression levels of the EPSP synthase gene. Finally, eight plants were confirmed for the presence and active expression of all three genes in T3 generation of the triple gene transformed cotton. These plants may be subjected to T4 generation to develop a new stable variety in due course of time.

Keywords: agriculture, cotton, transformation, cry genes, ELISA, PCR

Procedia PDF Downloads 363
641 CFD simulation of Near Wall Turbulence and Heat Transfer of Molten Salts

Authors: C. S. Sona, Makrand A. Khanwale, Channamallikarjun S. Mathpati

Abstract:

New generation nuclear power plants are currently being developed to be highly economical, to be passive safe, to produce hydrogen. An important feature of these reactors will be the use of coolants at temperature higher than that being used in current nuclear reactors. The molten fluoride salt with a eutectic composition of 46.5% LiF - 11.5% NaF - 42% KF (mol %) commonly known as FLiNaK is a leading candidate for heat transfer coolant for these nuclear reactors. CFD simulations were carried out using large eddy simulations to investigate the flow characteristics of molten FLiNaK at 850°C at a Reynolds number of 10,500 in a cylindrical pipe. Simulation results have been validated with the help of mean velocity profile using direct numerical simulation data. Transient velocity information was used to identify and characterise turbulent structures which are important for transfer of heat across solid-fluid interface. A wavelet transform based methodology called wavelet transform modulus maxima was used to identify and characterise the singularities. This analysis was also used for flow visualisation, and also to calculate the heat transfer coefficient using small eddy model. The predicted Nusselt number showed good agreement with the available experimental data.

Keywords: FLiNaK, heat transfer, molten salt, turbulent structures

Procedia PDF Downloads 426
640 Preparation and Characterization of Transparent and Conductive SnO2 Thin Films by Spray Pyrolysis

Authors: V. Jelev, P. Petkov, P. Shindov

Abstract:

Thin films of undoped and As-doped tin oxide (As:SnO2) were obtained on silicon and glass substrates at 450°- 480°C by spray pyrolysis technique. Tin chloride (SnCl4.5H2O) and As oxide (3As2O5.5H2O) were used as a source for Sn and As respectively. The As2O5 concentration was varied from 0 to 10 mol% in the starting water-alcoholic solution. The characterization of the films was provided with XRD, CEM, AFM and UV-VIS spectroscopy. The influence of the synthesis parameters (the temperature of the substrate, solution concentration, gas and solution flow rates, deposition time, nozzle-to substrate distance) on the optical, electrical and structural properties of the films was investigated. The substrate temperature influences on the surface topography, structure and resistivity of the films. Films grown at low temperatures (<300°C) are amorphous whereas this deposited at higher temperatures have certain degree of polycrystallinity. Thin oxide films deposited at 450°C are generally polycrystalline with tetragonal rutile structure. The resistivity decreases with dopant concentration. The minimum resistivity was achieved at dopant concentration about 2.5 mol% As2O5 in the solution. The transmittance greater than 80% and resistivity smaller than 7.5.10-4Ω.cm were achieved in the films deposited at 480°C. The As doped films (SnO2: As) deposited on silicon substrates was used for preparation of a large area position sensitive photodetector (PSD), acting on the base of a lateral photovoltaic effect. The position characteristic of PSD is symmetric to the zero and linear in the 80% of the active area. The SnO2 films are extremely stable under typical environmental conditions and extremely resistant to chemical etching.

Keywords: metal oxide film, SnO2 film, position sensitive photodetectors (PSD), lateral photovoltaic effect

Procedia PDF Downloads 276
639 Ordinary Differentiation Equations (ODE) Reconstruction of High-Dimensional Genetic Networks through Game Theory with Application to Dissecting Tree Salt Tolerance

Authors: Libo Jiang, Huan Li, Rongling Wu

Abstract:

Ordinary differentiation equations (ODE) have proven to be powerful for reconstructing precise and informative gene regulatory networks (GRNs) from dynamic gene expression data. However, joint modeling and analysis of all genes, essential for the systematical characterization of genetic interactions, are challenging due to high dimensionality and a complex pattern of genetic regulation including activation, repression, and antitermination. Here, we address these challenges by unifying variable selection and game theory through ODE. Each gene within a GRN is co-expressed with its partner genes in a way like a game of multiple players, each of which tends to choose an optimal strategy to maximize its “fitness” across the whole network. Based on this unifying theory, we designed and conducted a real experiment to infer salt tolerance-related GRNs for Euphrates poplar, a hero tree that can grow in the saline desert. The pattern and magnitude of interactions between several hub genes within these GRNs were found to determine the capacity of Euphrates poplar to resist to saline stress.

Keywords: gene regulatory network, ordinary differential equation, game theory, LASSO, saline resistance

Procedia PDF Downloads 614
638 Ultrasound-Assisted Extraction of Bioactive Compounds from Cocoa Shell and Their Encapsulation in Gum Arabic and Maltodextrin: A Technology to Produce Functional Food Ingredients

Authors: Saeid Jafari, Khursheed Ahmad Sheikh, Randy W. Worobo, Kitipong Assatarakul

Abstract:

In this study, the extraction of cocoa shell powder (CSP) was optimized, and the optimized extracts were spray-dried for encapsulation purposes. Temperature (45-65 ◦C), extraction time (30–60 min), and ethanol concentration (60–100%) were the extraction parameters. The response surface methodology analysis revealed that the model was significant (p ≤ 0.05) in interactions between all variables (total phenolic compound, total flavonoid content, and antioxidant activity as measured by 2,2-Diphenyl-1-picrylhydrazyl (DPPH) and ferric reducing antioxidant power (FRAP assays), with a lack of fit test for the model being insignificant (p > 0.05). Temperature (55 ◦C), time (45 min), and ethanol concentration (60%) were found to be the optimal extraction conditions. For spray-drying encapsulation, some quality metrics (e.g., water solubility, water activity) were insignificant (p > 0.05). The microcapsules were found to be spherical in shape using a scanning electron microscope. Thermogravimetric and differential thermogravimetric measurements of the microcapsules revealed nearly identical results. The gum arabic + maltodextrin microcapsule (GMM) showed potential antibacterial (zone of inhibition: 11.50 mm; lower minimum inhibitory concentration: 1.50 mg/mL) and antioxidant (DPPH: 1063 mM trolox/100g dry wt.) activities (p ≤ 0.05). In conclusion, the microcapsules in this study, particularly GMM, are promising antioxidant and antibacterial agents to be fortified as functional food ingredients for the production of nutraceutical foods with health-promoting properties.

Keywords: functional foods, coco shell powder, antioxidant activity, encapsulation, extraction

Procedia PDF Downloads 32
637 Optimization of Operational Parameters and Design of an Electrochlorination System to Produce Naclo

Authors: Pablo Ignacio Hernández Arango, Niels Lindemeyer

Abstract:

Chlorine, as Sodium Hypochlorite (NaClO) solution in water, is an effective, worldwide spread, and economical substance to eliminate germs in the water. The disinfection potential of chlorine lies in its ability to degrade the outer surfaces of bacterial cells and viruses. This contribution reports the main parameters of the brine electrolysis for the production of NaClO, which is afterward used for the disinfection of water either for drinking or recreative uses. Herein, the system design was simulated, optimized, build, and tested based on titanium electrodes. The process optimization considers the whole process, from the salt (NaCl) dilution tank in order to maximize its operation time util the electrolysis itself in order to maximize the chlorine production reducing the energy and raw material (salt and water) consumption. One novel idea behind this optimization process is the modification of the flow pattern inside the electrochemical reactors. The increasing turbulence and residence time impact positively the operations figures. The operational parameters, which are defined in this study were compared and benchmarked with the parameters of actual commercial systems in order to validate the pertinency of those results.

Keywords: electrolysis, water disinfection, sodium hypochlorite, process optimization

Procedia PDF Downloads 97
636 Effect of Sodium Chloride in the Recovery of Acetic Acid from Aqueous Solutions

Authors: Aidaoui Ahleme, Hasseine Abdelmalek

Abstract:

Acetic acid is one of the simplest and most widely used carboxylic acids having many important chemical and industrial applications. Total worldwide production of acetic acid is about 6.5 million tonnes per year. A great deal of efforts has been made in developing feasible and economic method for recovery of carboxylic acids. Among them, Liquid-liquid extraction using aqueous two-phase systems (ATPS) has been demonstrated to be a highly efficient separation technique. The study of efficiently separating and recovering Acetic acid from aqueous solutions is an important significance on industry and environmentally sustainable development. Many research groups in different countries are working in this field and some methods are proposed in the literature. In this work, effect of sodium chloride with different content (5%, 10% and 20%) on the liquid-liquid equilibrium data of (water+ acetic acid+ DCM) system is investigated. The addition of the salt in an aqueous solution introduces ionic forces which affect liquid-liquid equilibrium and which influence directly the distribution coefficient of the solute. From the experimental results, it can be concluded that when the percentage of salt increases in the aqueous solution, the equilibrium between phases is modified in favor of the extracted phase.

Keywords: acetic acid recovery, aqueous solution, salting-effect, sodium chloride

Procedia PDF Downloads 250
635 Microstracture of Iranian Processed Cheese

Authors: R. Ezzati, M. Dezyani, H. Mirzaei

Abstract:

The effects of the concentration of trisodium citrate (TSC) emulsifying salt (0.25 to 2.75%) and holding time (0 to 20 min) on the textural, rheological, and microstructural properties of Iranian Processed Cheese Cheddar cheese were studied using a central composite rotatable design. The loss tangent parameter (from small amplitude oscillatory rheology), extent of flow, and melt area (from the Schreiber test) all indicated that the meltability of process cheese decreased with increased concentration of TSC and that holding time led to a slight reduction in meltability. Hardness increased as the concentration of TSC increased. Fluorescence micrographs indicated that the size of fat droplets decreased with an increase in the concentration of TSC and with longer holding times. Acid-base titration curves indicated that the buffering peak at pH 4.8, which is due to residual colloidal calcium phosphate, decreased as the concentration of TSC increased. The soluble phosphate content increased as concentration of TSC increased. However, the insoluble Ca decreased with increasing concentration of TSC. The results of this study suggest that TSC chelated Ca from colloidal calcium phosphate and dispersed casein; the citrate-Ca complex remained trapped within the process cheese matrix. Increasing the concentration of TSC helped to improve fat emulsification and casein dispersion during cooking, both of which probably helped to reinforce the structure of process cheese.

Keywords: Iranian processed cheese, cheddar cheese, emulsifying salt, rheology

Procedia PDF Downloads 421
634 Effect of Botanical and Synthetic Insecticide on Different Insect Pests and Yield of Pea (Pisum sativum)

Authors: Muhammad Saeed, Nazeer Ahmed, Mukhtar Alam, Fazli Subhan, Muhammad Adnan, Fazli Wahid, Hidayat Ullah, Rafiullah

Abstract:

The present experiment evaluated different synthetic insecticides against Jassid (Amrasca devastations) on pea crop at Agriculture Research Institute Tarnab, Peshawar Khyber Pakhtunkhwa. The field was prepared to cultivate okra crop in Randomized Complete Block (RCB) Design having six treatments with four replications. Plant to plant and row to row distance was kept at 15 cm and 30 cm, respectively. Pre and post spray data were recorded randomly from the top, middle and bottom leaves of five selected plants. Five synthetic insecticides, namely Confidor (Proponil), a neonicotinoid insecticide, Chlorpyrifos (chlorinated organophosphate (OP) insecticide), Lazer (dinitroaniline) (Pendimethaline), Imidacloprid (neonicotinoids insecticide) and Thiodan (Endosulfan, organochlorine insecticide), were used against infestation of aphids, pea pod borer, stem fly, leaf minor and pea weevil. Each synthetic insecticide showed significantly more effectiveness than control (untreated plots) but was non-significant among each other. The lowest population density was recorded in the plot treated with synthetic insecticide i.e. Confidor (0.6175 liter.ha-1) (4.24 aphids plant⁻¹) which is followed by Imidacloprid (0.6175 liter.ha⁻¹) (4.64 pea pod borer plant⁻¹), Thiodan (1.729 liter.ha⁻¹) (4.78 leaf minor plant⁻¹), Lazer (2.47 liter.ha-1) (4.91 pea weevil plant⁻¹), Chlorpyrifos (1.86 liter.ha⁻¹) (5.11 stem fly plant⁻¹), respectively while the highest population was recorded from the control plot. It is concluded from the data that the residual effect decreases with time after the application of spray, which may be less dangerous to the environment and human beings and can effectively manage this dread.

Keywords: okra crop, jassids, Confidor, imidacloprid, chlorpyrifos, laser, Thiodan

Procedia PDF Downloads 48
633 Numerical Investigation on Transient Heat Conduction through Brine-Spongy Ice

Authors: S. R. Dehghani, Y. S. Muzychka, G. F. Naterer

Abstract:

The ice accretion of salt water on cold substrates creates brine-spongy ice. This type of ice is a mixture of pure ice and liquid brine. A real case of creation of this type of ice is superstructure icing which occurs on marine vessels and offshore structures in cold and harsh conditions. Transient heat transfer through this medium causes phase changes between brine pockets and pure ice. Salt rejection during the process of transient heat conduction increases the salinity of brine pockets to reach a local equilibrium state. In this process the only effect of passing heat through the medium is not changing the sensible heat of the ice and brine pockets; latent heat plays an important role and affects the mechanism of heat transfer. In this study, a new analytical model for evaluating heat transfer through brine-spongy ice is suggested. This model considers heat transfer and partial solidification and melting together. Properties of brine-spongy ice are obtained using properties of liquid brine and pure ice. A numerical solution using Method of Lines discretizes the medium to reach a set of ordinary differential equations. Boundary conditions are chosen using one of the applicable cases of this type of ice; one side is considered as a thermally isolated surface, and the other side is assumed to be suddenly affected by a constant temperature boundary. All cases are evaluated in temperatures between -20 C and the freezing point of brine-spongy ice. Solutions are conducted using different salinities from 5 to 60 ppt. Time steps and space intervals are chosen properly to maintain the most stable and fast solution. Variation of temperature, volume fraction of brine and brine salinity versus time are the most important outputs of this study. Results show that transient heat conduction through brine-spongy ice can create a various range of salinity of brine pockets from the initial salinity to that of 180 ppt. The rate of variation of temperature is found to be slower for high salinity cases. The maximum rate of heat transfer occurs at the start of the simulation. This rate decreases as time passes. Brine pockets are smaller at portions closer to the colder side than that of the warmer side. A the start of the solution, the numerical solution tends to increase instabilities. This is because of sharp variation of temperature at the start of the process. Changing the intervals improves the unstable situation. The analytical model using a numerical scheme is capable of predicting thermal behavior of brine spongy ice. This model and numerical solutions are important for modeling the process of freezing of salt water and ice accretion on cold structures.

Keywords: method of lines, brine-spongy ice, heat conduction, salt water

Procedia PDF Downloads 196
632 Eco-Biological Study of Artemia salina (Branchiopoda, Anostraca) in Sahline Salt Lake, Tunisia

Authors: Khalil Trigui, Rafik Ben Said, Fourat Akrout, Neji Aloui

Abstract:

In this study, we examined in the first part the eco-biology of Artemia (A.salina) collected from Sahline Salt Lake (governorate of Monastir: Tunisia) during an annual cycle. The correlations between environmental factors and some biological parameters of Artemia were determined. The results obtained showed that the environmental factors affected the biology of Artemia. The highest abundance was recorded in May (550 ± 2,16 ind/l) and all life history stages existed with different seasonal proportions. The Artemia population is bisexual with ovoviviparous reproduction at the beginning and oviparous at the end of the life cycle. We also recorded the dominance of males at the start and the females at the end of the cycle. During all the study period, the size of mature females is bigger than that of males. The fertility obtained resulted in a significant production of cysts compared to the nauplii. A negative correlation with highly significant effect was deduced between environmental factors (temperature and salinity) and the production of nauplii (ovoviviparity) in contrast with dissolved oxygen. In the second part of our work is consecrated to the mastery of breeding Artemia. For this, we tested the effect of five external factors (temperature, salinity, dissolved oxygen, light intensity and food) on the survival of this crustacean. Thereby, the survival rates of Artemia were affected by the different values of studied factors. The recorded results showed that Artemia salina has an optimum temperature ranged from 25 to 27°C with a survival rate ranging from 84 to 88%. The optimal salinity to breed Artemia salina was 37 psu (62 ± 0,23%). Nevertheless, this crustacean was able to survive and withstand the salinity of 0 psu (freshwater). The optimum concentration of dissolved oxygen was 7mg/l with a survival rate of 87,11 ± 0,04%. An optimum light intensity of 10 lux revealed a survival rate equal to 85,33 ± 0,01%. The results also showed that the preferred micro-algae by Artemia is Dunaliella salina with a maximum survival rate of the order of 80 ± 0,15%. There is a significant effect for all experienced parameters on the survival of Artemia reared except the nature of food.

Keywords: Artemia salina, biology, breeding, ecology, Sahline salt lake

Procedia PDF Downloads 331
631 White Clover Trifolium repens L. Genetic Diversity and Salt Tolerance in Urban Area of Riga

Authors: Dace Grauda, Gunta Cekstere, Inta Belogrudova, Andis Karlsons, Isaak Rashal

Abstract:

Trifolium repens L. (white or Dutch clover) is a perennial herb, belongs to legume family (Leguminosae Juss.), spread extensively by stolons and seeds. The species is cultivated worldwide and was naturalized in many countries in meadows, yards, gardens, along roads and streets etc., especially in temperate regions. It is widespread also in grasslands throughout Riga, the capital of Latvia. The goal of this study was to investigate genetic structure of white clover population in Riga and to evaluate influence of different salt concentration on plants. For this purpose universal retrotranspozone based IRAP (Inter-Retrotransposon Amplified Polymorphism) method was used. The plant material was collected in different regions of Riga and in several urban areas of Latvia. Plant DNA was isolated from in silicogel dried leaves of using 1% CTAB (cetyltrimet-ammonium bromide) buffer DNA extraction procedure. Genetic structure of city population and wild populations were compared. Soil salinization is an important issue associated with low water resources and highly urbanized areas in aride and semi-aride climate conditions, as well as de-icing salt application to prevent ice formation on roads in winter. The T. repens variety ‘Daile’ (form giganteum), one of the often used component of urban greeneries, was studied in this investigation. Plants were grown from seeds and cultivated in the light conditions (18-25 C, 16h/8h of day/night, light intensity 3000 lx) in plastic pots (200 ml), filled with commercial neutralized (pH 5.9 ± 0.3) peat substrate with mineral nutrients. To analyse the impact of increased soil salinity treatments with gradually rising NaCl (0; 20; 40; 60; 80; 100 mM) levels were arranged. Plants were watered when necessary with deionised water to provide optimum substrate moisture 60-70%. The experiment was terminated six weeks after establishment. For analysis of mineral nutrients, dry plant material (above ground part and roots) was used. Decrease of Na content can be significant under elevated salinity till 20 mM NaCl. High NaCl concentrations in the substrate increase Na, Cl, Cu, Fe, and Mn accumulation, but reduce S, Mg, K content in the plant above ground parts. Abiotic stresses generally changes the levels of DNA metilation. Several candidate gene for salt tolerance will be analysed for DNA metilation level using Pyromark-Q24 advanced.

Keywords: DNA metilation, IRAP, soil salinization, white clover

Procedia PDF Downloads 339
630 The Effect of Global Warming on Water Resources

Authors: Ehsan Soltanzadeh, Hassan Zare

Abstract:

This paper introduces examples of the influences of global warming on water resources and means of adaptation. The contributing causes of shortage in water resources are sophisticated and have interactions with each other. The world-scale phenomena like global warming have led to an increase in air and ocean’s mean temperature, and this has already caused adverse effects on water resources. Other factors that exacerbated this situation such as population increase, changes in farming habits, rise in city dwellers, unbalanced request for energy and aquatic resources, improved living standards, new eating habits, increasing economic growth and consequently flourishing industrial activities, and different types of pollution such as air, water, etc., are compelling more pressure on our limited water resources. The report will briefly discuss climate change and its detrimental impacts on the water resources and finally will introduce two effective solutions to mitigate the consequences or even reverse them in the near to mid-term future: utilization of molten salt technology for storing huge amounts of generated electricity in solar power plants to accommodate power grid demands, and implementing fuel cell CHPs to reduce carbon emission, and consequently, mitigate the global warming phenomenon as the major root cause of threatening water resources.

Keywords: climate change, global warming, water resources, GHG emissions, fuel cell-CHP, solar power plant, molten salt storage

Procedia PDF Downloads 85
629 The Physicochemical Properties of Two Rivers in Eastern Cape South Africa as Relates to Vibrio Spp Density

Authors: Oluwatayo Abioye, Anthony Okoh

Abstract:

In the past view decades; human has experienced outbreaks of infections caused by pathogenic Vibrio spp which are commonly found in aquatic milieu. Asides the well-known Vibrio cholerae, discovery of other pathogens in this genus has been on the increase. While the dynamics of occurrence and distribution of Vibrio spp have been linked to some physicochemical parameters in salt water, data in relation to fresh water is limited. Hence, two rivers of importance in the Eastern Cape, South Africa were selected for this study. In all, eleven sampling sites were systematically identified and relevant physicochemical parameters, as well as Vibrio spp density, were determined for the period of six months using standard instruments and methods. Results were statistically analysed to determined key physicochemical parameters that determine the density of Vibrio spp in the selected rivers. Results: The density of Vibrio spp in all the sampling points ranges between < 1 CFU/mL to 174 x 10-2 CFU/mL. The physicochemical parameters of some of the sampling points were above the recommended standards. The regression analysis showed that Vibrio density in the selected rivers depends on a complex relationship between various physicochemical parameters. Conclusion: This study suggests that Vibrio spp density in fresh water does not depend on only temperature and salinity as suggested by earlier studies on salt water but rather on a complex relationship between several physicochemical parameters.

Keywords: vibrio density, physicochemical properties, pathogen, aquatic milieu

Procedia PDF Downloads 217
628 Formulation and Evaluation of Silibilin Loaded PLGA Nanoparticles for Cancer Therapy

Authors: Priya Patel, Paresh Patel, Mihir Raval

Abstract:

Silibinin, a flavanone as an antimicrotubular agent used in the treatment of cancer, was encapsulated in nanoparticles (NPs) of poly (lactide-co-glycolide) (PLGA) polymer using the spray-drying technique. The effects of various experimental parameters were optimized by box-behnken experimental design. Production yield, encapsulation efficiency and dissolution study along with characterization by scanning electron microscopy, DSC, FTIR followed by bioavailability study. Particle size and zeta potential were evaluated by using zetatrac particle size analyzer. Experimental design it was evaluated that inlet temperature and polymer concentration influence on the drug release. Feed flow rate impact on particle size. Results showed that spray drying technique yield 149 nm indicate nanosize range. The small size of the nanoparticle resulted in an enhanced cellular entry and greater bioavailability. Entrapment efficiency was found between 89.35% and 98.36%. Zeta potential shows good stability index of nanoparticle formulation. The in vitro release studies indicated the silibinin loaded PLGA nanoparticles provide controlled drug release over a period of 32 h. Pharmacokinetic studies demonstrated that after oral administration of silibinin-loaded PLGA nanoparticles to rats at a dose of 10 mg/kg, relative bioavailability was enhanced about 8.85-fold, compared to silibinin suspension as control hence, this investigation demonstrated the potential of the experimental design in understanding the effect of the formulation variables on the quality of silibinin loaded PLGA nanoparticles. These results describe an effective strategy of silibinin loaded PLGA nanoparticles and might provide a promising approach against the cancer.

Keywords: silibinin, cancer, nanoparticles, PLGA, bioavailability

Procedia PDF Downloads 399
627 Water Problems, Social Mobilization and Migration: A Case Study of Lake Urmia

Authors: Fatemeh Dehghan Khangahi, Hakan Gunes

Abstract:

Transforming a public necessity into a commercial commodity becomes more and more evident as time goes on, and it is one of the issues of water shortage. Development projects of countries, consume the water and waterbeds in various forms, ignoring the concepts such as sustainability and the negative effects they place on the environment, pollute and change the ways of waterways. Throughout these processes, the water basins and all the vital environments sometimes can suffer damage to the irreparable level. In this context, the issue of Lake Urmia that is located in the North West of Iran left alone by drought, has been researched. The lake, which is on the list of UNESCO's biosphere reserves, is now exposed to the danger of desiccation. If the desiccation is fully realized, more than 5.000.000 people that they are living around the lake, will have to migrate as a result of negative living conditions. As a matter of fact, along with the recent years of increasing drought level, regional migrations have begun. In addition to migration issues, it is also necessary to specify the negative effects on human and all-round’s life that depend on the formation of salt storms, mixing of salt into the air and soil, which threaten human health seriously because the lake is salty. The main aim of this work is to raise national and international awareness of this problem, which is an environment and a human tragedy at the same time. This research has two basic questions: 1) In the case of Lake Urmia, what are environmental problems and how they have emerged and what is the role of governments? 2) What is the social consequence of this problem in relation to the first question? In response, after the literature search, having a comparative view of the situation of the Aral Sea and the Great Salt Lake (Utah, USA), which involved the two major international examples. The first, one is related to the terms of population and migration, the second is about biological properties. Then, data and status information that provided after 3 years area research has been evaluated. Towards the end, with the support of qualitative and quantitative methods, the study of social mobilization in the region has been carried out. An example of it is using the public space of TRAXTOR matches like a protests area.

Keywords: environment problems, water, social mobilization, Lake Urmia, migration

Procedia PDF Downloads 108