Search results for: volume strain
3512 Half-Metallicity in a BiFeO3/La2/3Sr1/3MnO3 Superlattice: A First-Principles Study
Authors: Jiwuer Jilili, Ulrich Eckern, Udo Schwingenschlogl
Abstract:
We present first principles results for the electronic, magnetic, and optical properties of the BiFeO3 /La2/3Sr1/3MnO3 heterostructure as obtained by spin polarized calculations using density functional theory. The electronic states of the heterostructure are compared to those of the bulk compounds. Structural relaxation turns out to have only a minor impact on the chemical bonding, even though the oxygen octahedra in La2/3Sr1/3MnO3 develop some distortions due to the interface strain. While a small charge transfer affects the heterointerfaces, our results demonstrate that the half-metallic character of La2/3Sr1/3MnO3 is fully maintained.Keywords: BiFeO3, La2/3Sr1/3MnO3, superlattice, half-metallicity
Procedia PDF Downloads 2763511 Multi-Scale Damage Modelling for Microstructure Dependent Short Fiber Reinforced Composite Structure Design
Authors: Joseph Fitoussi, Mohammadali Shirinbayan, Abbas Tcharkhtchi
Abstract:
Due to material flow during processing, short fiber reinforced composites structures obtained by injection or compression molding generally present strong spatial microstructure variation. On the other hand, quasi-static, dynamic, and fatigue behavior of these materials are highly dependent on microstructure parameters such as fiber orientation distribution. Indeed, because of complex damage mechanisms, SFRC structures design is a key challenge for safety and reliability. In this paper, we propose a micromechanical model allowing prediction of damage behavior of real structures as a function of microstructure spatial distribution. To this aim, a statistical damage criterion including strain rate and fatigue effect at the local scale is introduced into a Mori and Tanaka model. A critical local damage state is identified, allowing fatigue life prediction. Moreover, the multi-scale model is coupled with an experimental intrinsic link between damage under monotonic loading and fatigue life in order to build an abacus giving Tsai-Wu failure criterion parameters as a function of microstructure and targeted fatigue life. On the other hand, the micromechanical damage model gives access to the evolution of the anisotropic stiffness tensor of SFRC submitted to complex thermomechanical loading, including quasi-static, dynamic, and cyclic loading with temperature and amplitude variations. Then, the latter is used to fill out microstructure dependent material cards in finite element analysis for design optimization in the case of complex loading history. The proposed methodology is illustrated in the case of a real automotive component made of sheet molding compound (PSA 3008 tailgate). The obtained results emphasize how the proposed micromechanical methodology opens a new path for the automotive industry to lighten vehicle bodies and thereby save energy and reduce gas emission.Keywords: short fiber reinforced composite, structural design, damage, micromechanical modelling, fatigue, strain rate effect
Procedia PDF Downloads 1093510 Mix Design Curves for High Volume Fly Ash Concrete
Authors: S. S. Awanti, Aravindakumar B. Harwalkar
Abstract:
Concrete construction in future has to be environmental friendly apart from being safe so that society at large is benefited by the huge investments made in the infrastructure projects. To achieve this, component materials of the concrete system have to be optimized with reference to sustainability. This paper presents a study on development of mix proportions of high volume fly ash concrete (HFC). A series of HFC mixtures with cement replacement levels varying between 50% and 65% were prepared with water/binder ratios of 0.3 and 0.35. Compressive strength values were obtained at different ages. From the experimental results, pozzolanic efficiency ratios and mix design curves for HFC were established.Keywords: age factor, compressive strength, high volume fly ash concrete, pozolanic efficiency ratio
Procedia PDF Downloads 3143509 Computational Fluid Dynamics Simulation Study of Flow near Moving Wall of Various Surface Types Using Moving Mesh Method
Authors: Khizir Mohd Ismail, Yu Jun Lim, Tshun Howe Yong
Abstract:
The study of flow behavior in an enclosed volume using Computational Fluid Dynamics (CFD) has been around for decades. However, due to the knowledge limitation of adaptive grid methods, the flow in an enclosed volume near the moving wall using CFD is less explored. A CFD simulation of flow in an enclosed volume near a moving wall was demonstrated and studied by introducing a moving mesh method and was modeled with Unsteady Reynolds-Averaged Navier-Stokes (URANS) approach. A static enclosed volume with controlled opening size in the bottom was positioned against a moving, translational wall with sliding mesh features. Controlled variables such as smoothed, crevices and corrugated wall characteristics, the distance between the enclosed volume to the wall and the moving wall speed against the enclosed chamber were varied to understand how the flow behaves and reacts in between these two geometries. These model simulations were validated against experimental results and provided result confidence when the simulation had shown good agreement with the experimental data. This study had provided better insight into the flow behaving in an enclosed volume when various wall types in motion were introduced within the various distance between each other and create a potential opportunity of application which involves adaptive grid methods in CFD.Keywords: moving wall, adaptive grid methods, CFD, moving mesh method
Procedia PDF Downloads 1473508 Use of Nanoclay in Various Modified Polyolefins
Authors: Michael Tupý, Alice Tesaříková-Svobodová, Dagmar Měřínská, Vít Petránek
Abstract:
Polyethylene (PE), Polypropylene (PP), Polyethylene (vinyl acetate) (EVA) and Surlyn (modif-PE) nano composite samples were prepared with montmorillonite fillers Cloisite 93A and Dellite 67G. The amount of modified Na+ montmorillonite (MMT) was fixed to 5 % (w/w). For the compounding of polymer matrix and chosen nano fillers twin-screw kneader was used. The level of MMT intercalation or exfoliation in the nano composite systems was studied by transmission electron microscopy (TEM) observations. The properties of samples were evaluated by dynamical mechanical analysis (E* modulus at 30 °C) and by the measurement of tensile properties (stress and strain at break).Keywords: polyethylene, polypropylene, polyethylene(vinyl acetate), clay, nanocomposite, montmorillonite
Procedia PDF Downloads 5353507 Elastohydrodynamic Lubrication Study Using Discontinuous Finite Volume Method
Authors: Prawal Sinha, Peeyush Singh, Pravir Dutt
Abstract:
Problems in elastohydrodynamic lubrication have attracted a lot of attention in the last few decades. Solving a two-dimensional problem has always been a big challenge. In this paper, a new discontinuous finite volume method (DVM) for two-dimensional point contact Elastohydrodynamic Lubrication (EHL) problem has been developed and analyzed. A complete algorithm has been presented for solving such a problem. The method presented is robust and easily parallelized in MPI architecture. GMRES technique is implemented to solve the matrix obtained after the formulation. A new approach is followed in which discontinuous piecewise polynomials are used for the trail functions. It is natural to assume that the advantages of using discontinuous functions in finite element methods should also apply to finite volume methods. The nature of the discontinuity of the trail function is such that the elements in the corresponding dual partition have the smallest support as compared with the Classical finite volume methods. Film thickness calculation is done using singular quadrature approach. Results obtained have been presented graphically and discussed. This method is well suited for solving EHL point contact problem and can probably be used as commercial software.Keywords: elastohydrodynamic, lubrication, discontinuous finite volume method, GMRES technique
Procedia PDF Downloads 2583506 Structural Geology along the Jhakri-Wangtu Road (Jutogh Section) Himachal Pradesh, NW Higher Himalaya, India
Authors: Rajkumar Ghosh
Abstract:
The paper presents a comprehensive study of the structural analysis of the Chaura Thrust in Himachal Pradesh, India. The research focuses on several key aspects, including the activation timing of the Main Central Thrust (MCT) and the South Tibetan Detachment System (STDS), the identification and characterization of mylonitised zones through microscopic examination, and the understanding of box fold characteristics and their implications in the regional geology of the Himachal Himalaya. The primary objective of the study is to provide field documentation of the Chaura Thrust, which was previously considered a blind thrust with limited field evidence. Additionally, the research aims to characterize box folds and their signatures within the broader geological context of the Himachal Himalaya, document the temperature range associated with grain boundary migration (GBM), and explore the overprinting structures related to multiple sets of Higher Himalayan Out-of-Sequence Thrusts (OOSTs). The research methodology employed geological field observations and microscopic studies. Samples were collected along the Jhakri-Chaura transect at regular intervals of approximately 1 km to conduct strain analysis. Microstructural studies at the grain scale along the Jhakri-Wangtu transect were used to document the GBM-associated temperature range. The study reveals that the MCT activated in two parts, as did the STDS, and provides insights into the activation ages of the Main Boundary Thrust (MBT) and the Main Frontal Thrust (MFT). Under microscopic examination, the study identifies two mylonitised zones characterized by S-C fabric, and it documents dynamic and bulging recrystallization, as well as sub-grain formation. Various types of crenulated schistosity are observed in photomicrographs, including a rare occurrence where crenulation cleavage and sigmoid Muscovite are found juxtaposed. The study also notes the presence of S/SE-verging meso- and micro-scale box folds around Chaura, which may indicate structural upliftment. Kink folds near Chaura are visible, while asymmetric shear sense indicators in augen mylonite are predominantly observed under microscopic examination. Moreover, the research highlights the documentation of the Higher Himalayan Out-of-Sequence Thrust (OOST) in Himachal Pradesh, which activated the MCT and occurred within a zone south of the Main Central Thrust Upper (MCTU). The presence of multiple sets of OOSTs suggests a zigzag pattern of strain accumulation in the area. The study emphasizes the significance of understanding the overprinting structures associated with OOSTs. Overall, this study contributes to the understanding of the structural analysis of the Chaura Thrust and its implications in the regional geology of the Himachal Himalaya. The research underscores the importance of microscopic studies in identifying mylonitised zones and various types of crenulated schistosity. Additionally, the study documents the GBM-associated temperature range and provides insights into the activation of the Higher Himalayan Out-of-Sequence Thrust (OOST) in Himachal Pradesh. The findings of the study were obtained through geological field observations, microscopic studies, and strain analysis, offering valuable insights into the activation timing, mylonitization characteristics, and overprinting structures related to the Chaura Thrust and the broader tectonic framework of the region.Keywords: Main Central Thrust, Jhakri Thrust, Chaura Thrust, Higher Himalaya, Out-of-Sequence Thrust, Sarahan Thrust
Procedia PDF Downloads 1033505 A Systematic Review on Factors/Predictors and Outcomes of Parental Distress in Childhood Acute Lymphoblastic Leukemia
Authors: Ana Ferraz, Martim Santos, M. Graça Pereira
Abstract:
Distress among parents of children with acute lymphoblastic leukemia (ALL) is common during treatment and can persist several years post-diagnosis, impacting the adjustment of children and parents themselves. Current evidence is needed to examine the scope and nature of parental distress in childhood ALL. This review focused on associated variables, predictors, and outcomes of parental distress following their ALL diagnosis of their child. PubMed, Web of Science, and PsycINFO databases were searched for English and Spanish papers published from 1983 to 2021. PRISMA statement was followed, and papers were evaluated through a standardized methodological quality assessment tool (NHLBI). Of the 28 papers included, 16 were evaluated as fair, eight as good, and four as poor. Regarding results, 11 papers reported subgroup differences, and 15 found potential predictors of parental distress, including sociodemographic, psychosocial, psychological, family, health, and ALL-specific variables. Significant correlations were found between parental distress, social support, illness cognitions, and resilience, as well as contradictory results regarding the impact of sociodemographic variables on parental distress. Family cohesion and caregiver burden were associated with distress, and the use of healthy coping strategies was associated with less anxiety. Caregiver strain contributed to distress, and the overall impact of illness positively predicted anxiety in mothers and somatization in fathers. Differences in parental distress were found regarding group risk, time since diagnosis, and treatment phases. Thirteen papers explored the outcomes of parental distress on psychological, family, health, and social/education outcomes. Parental distress was the most important predictor of family strain. Significant correlations were found between parental distress at diagnosis and further psychological adjustment of parents themselves and their children. Most papers reported correlations between parental distress on children’s adjustment and quality of life, although few studies reported no association. Correlations between maternal depression and child participation in education and social life were also found. Longitudinal studies are needed to better understand parental distress and its consequences on health outcomes, in particular. Future interventions should focus mainly on parents on distress reduction and psychological adjustment, both in parents and children over time.Keywords: childhood acute lymphoblastic leukemia, family, parental distress, psychological adjustment, quality of life
Procedia PDF Downloads 1103504 Drying and Transport Processes in Distributed Hydrological Modelling Based on Finite Volume Schemes (Iber Model)
Authors: Carlos Caro, Ernest Bladé, Pedro Acosta, Camilo Lesmes
Abstract:
The drying-wet process is one of the topics to be more careful in distributed hydrological modeling using finite volume schemes as a means of solving the equations of Saint Venant. In a hydrologic and hydraulic computer model, surface flow phenomena depend mainly on the different flow accumulation and subsequent runoff generation. These accumulations are generated by routing, cell by cell, from the heights of water, which begin to appear due to the rain at each instant of time. Determine when it is considered a dry cell and when considered wet to include in the full calculation is an issue that directly affects the quantification of direct runoff or generation of flow at the end of a zone of contribution by accumulations flow generated from cells or finite volume.Keywords: hydrology, transport processes, hydrological modelling, finite volume schemes
Procedia PDF Downloads 3863503 Fatigue Crack Initiation of Al-Alloys: Effect of Heat Treatment Condition
Authors: M. Benachour, N. Benachour, M. Benguediab
Abstract:
In this investigation an empirical study was made on fatigue crack initiation on 7075 T6 and 7075 T71 al-alloys under constant amplitude loading. At initiation stage, local strain approach at the notch was applied. Single Edge Notch Tensile specimen with semi circular notch is used. Based on experimental results, effect of mean stress, is highlights on fatigue initiation life. Results show that fatigue life initiation is affected by notch geometry and mean stress.Keywords: fatigue crack initiation, al-alloy, mean stress, heat treatment state
Procedia PDF Downloads 2333502 Understanding the Effect of Material and Deformation Conditions on the “Wear Mode Diagram”: A Numerical Study
Authors: A. Mostaani, M. P. Pereira, B. F. Rolfe
Abstract:
The increasing application of Advanced High Strength Steel (AHSS) in the automotive industry to fulfill crash requirements has introduced higher levels of wear in stamping dies and parts. Therefore, understanding wear behaviour in sheet metal forming is of great importance as it can help to reduce the high costs currently associated with tool wear. At the contact between the die and the sheet, the tips of hard tool asperities interact with the softer sheet material. Understanding the deformation that occurs during this interaction is important for our overall understanding of the wear mechanisms. For these reasons, the scratching of a perfectly plastic material by a rigid indenter has been widely examined in the literature; with finite element modelling (FEM) used in recent years to further understand the behaviour. The ‘wear mode diagram’ has been commonly used to classify the deformation regime of the soft work-piece during scratching, into three modes: ploughing, wedge formation, and cutting. This diagram, which is based on 2D slip line theory and upper bound method for perfectly plastic work-piece and rigid indenter, relates different wear modes to attack angle and interfacial strength. This diagram has been the basis for many wear studies and wear models to date. Additionally, it has been concluded that galling is most likely to occur during the wedge formation mode. However, there has been little analysis in the literature of how the material behaviour and deformation conditions associated with metal forming processes influence the wear behaviour. Therefore, the first aim of this work is first to use a commercial FEM package (Abaqus/Explicit) to build a 3D model to capture wear modes during scratching with indenters with different attack angles and different interfacial strengths. The second goal is to utilise the developed model to understand how wear modes might change in the presence of bulk deformation of the work-piece material as a result of the metal forming operation. Finally, the effect of the work-piece material properties, including strain hardening, will be examined to understand how these influence the wear modes and wear behaviour. The results show that both strain hardening and substrate deformation can change the critical attack angle at which the wedge formation regime is activated.Keywords: finite element, pile-up, scratch test, wear mode
Procedia PDF Downloads 3293501 Level of Caregiver Burden: A Study of Caregivers of Stroke Survivors at CRP in Bangladesh
Authors: Yeasir Arafat Alve, Nazmun Nahar, Salma BeguM
Abstract:
Introduction / Rationale: Caregivers of stroke survivors have experienced financial, emotional, physical and mental anxiety and have influence of family bonding and social customs, where 80% of caregivers were women and majority of the patients were cared for by immediate family members for example a spouse, son/daughter, son-in-law, daughter-in-law, siblings and they are significantly feel burden as a caregiver. In Bangladeshi context, there has a limitation of knowledge about the level of caregiver burden. This study could be suggested the health professional to focus on the care giving stress to provide a better support to them and also it will be advisable to provide equivalent services for caregivers and their families. Objectives: The study finds out the socio-demographic image of caregivers of stroke survivors in Bangladesh as well as discovers the level of burden of caregiver of stroke survivor in relation to general strain, isolation, disappointment, emotional involvement and environment. The study will find out the association between level of burden among caregivers and onset of stroke of survivors & duration of care giving. As well as to determine the association between level of burden among caregivers and caregiver’s age, gender, occupation and caregiver’s relationship with stroke survivors. Method / Approach: The study is a non experimental cross-sectional study design where 151 participants were selected through purposive comprehensive sampling. Data were selected from occupational therapy outdoor and stroke rehab unit, CRP (Savar & Mirpur) where using the Caregiver Burden Scale (a structured questionnaire) with face to face interview. Results: Most of the caregivers (78.8%) of stroke survivors faced moderate level of burden in general strain (37.7%), isolation (27.2%) but in case of disappointment (60.3%) feel higher burden and lower burden in emotional involvement (9.9%) and environment (0.7%). Caregiver burden level was significantly associated with caregivers’ age (P=0.006), sex (P=0.002), occupation (p= 0.04), relationship with stroke survivors (P=0.02), care giving duration (P=0.000), care giving hours (P=0.009), and onset of stroke (P=0.000) of stroke survivors. Conclusion: The study findings revealed that most of the caregivers faced moderate burden where no environmental burden for them, this is possibly in case of Bangladeshi culture where people hospitable. Through this study, it was also found that there is a possibility to have the higher burden. Finally, it is being also suggested that appropriate advice and support may preserve care giving which eventually enables the survivors to live a longer and more fulfilling life in the community.Keywords: caregiver, level of caregiver burden, stroke survivor, stroke rehab unit
Procedia PDF Downloads 3133500 Extension of the Simplified Theory of Plastic Zones for Analyzing Elastic Shakedown in a Multi-Dimensional Load Domain
Authors: Bastian Vollrath, Hartwig Hubel
Abstract:
In case of over-elastic and cyclic loading, strain may accumulate due to a ratcheting mechanism until the state of shakedown is possibly achieved. Load history dependent numerical investigations by a step-by-step analysis are rather costly in terms of engineering time and numerical effort. In the case of multi-parameter loading, where various independent loadings affect the final state of shakedown, the computational effort becomes an additional challenge. Therefore, direct methods like the Simplified Theory of Plastic Zones (STPZ) are developed to solve the problem with a few linear elastic analyses. Post-shakedown quantities such as strain ranges and cyclic accumulated strains are calculated approximately by disregarding the load history. The STPZ is based on estimates of a transformed internal variable, which can be used to perform modified elastic analyses, where the elastic material parameters are modified, and initial strains are applied as modified loading, resulting in residual stresses and strains. The STPZ already turned out to work well with respect to cyclic loading between two states of loading. Usually, few linear elastic analyses are sufficient to obtain a good approximation to the post-shakedown quantities. In a multi-dimensional load domain, the approximation of the transformed internal variable transforms from a plane problem into a hyperspace problem, where time-consuming approximation methods need to be applied. Therefore, a solution restricted to structures with four stress components was developed to estimate the transformed internal variable by means of three-dimensional vector algebra. This paper presents the extension to cyclic multi-parameter loading so that an unlimited number of load cases can be taken into account. The theoretical basis and basic presumptions of the Simplified Theory of Plastic Zones are outlined for the case of elastic shakedown. The extension of the method to many load cases is explained, and a workflow of the procedure is illustrated. An example, adopting the FE-implementation of the method into ANSYS and considering multilinear hardening is given which highlights the advantages of the method compared to incremental, step-by-step analysis.Keywords: cyclic loading, direct method, elastic shakedown, multi-parameter loading, STPZ
Procedia PDF Downloads 1633499 Ultrasonic Pulse Velocity Investigation of Polypropylene and Steel Fiber Reinforced Concrete
Authors: Erjola Reufi, Jozefita Marku, Thomas Bier
Abstract:
Ultrasonic pulse velocity (UPV) method has been shown for some time to provide a reliable means of estimating properties and offers a unique opportunity for direct, quick and safe control of building damaged by earthquake, fatigue, conflagration and catastrophic scenarios. On this investigation hybrid reinforced concrete has been investigated by UPV method. Hooked end steel fiber of length 50 and 30 mm was added to concrete in different proportion 0, 0.25, 0.5, and 1 % by the volume of concrete. On the other hand, polypropylene fiber of length 12, 6, 3 mm was added to concrete of 0.1, 0.2, and 0.4 % by the volume of concrete. Fifteen different mixture has been prepared to investigate the relation between compressive strength and UPV values and also to investigate on the effect of volume and type of fiber on UPV values.Keywords: compressive strength, polypropylene fiber, steel fiber, ultrasonic pulse velocity, volume, type of fiber
Procedia PDF Downloads 4043498 Effect of Threshold Configuration on Accuracy in Upper Airway Analysis Using Cone Beam Computed Tomography
Authors: Saba Fahham, Supak Ngamsom, Suchaya Damrongsri
Abstract:
Objective: The objective is to determine the optimal threshold of Romexis software for the airway volume and minimum cross-section area (MCA) analysis using Image J as a gold standard. Materials and Methods: A total of ten cone-beam computed tomography (CBCT) images were collected. The airway volume and MCA of each patient were analyzed using the automatic airway segmentation function in the CBCT DICOM viewer (Romexis). Airway volume and MCA measurements were conducted on each CBCT sagittal view with fifteen different threshold values from the Romexis software, Ranging from 300 to 1000. Duplicate DICOM files, in axial view, were imported into Image J for concurrent airway volume and MCA analysis as the gold standard. The airway volume and MCA measured from Romexis and Image J were compared using a t-test with Bonferroni correction, and statistical significance was set at p<0.003. Results: Concerning airway volume, thresholds of 600 to 850 as well as 1000, exhibited results that were not significantly distinct from those obtained through Image J. Regarding MCA, employing thresholds from 400 to 850 within Romexis Viewer showed no variance from Image J. Notably, within the threshold range of 600 to 850, there were no statistically significant differences observed in both airway volume and MCA analyses, in comparison to Image J. Conclusion: This study demonstrated that the utilization of Planmeca Romexis Viewer 6.4.3.3 within threshold range of 600 to 850 yields airway volume and MCA measurements that exhibit no statistically significant variance in comparison to measurements obtained through Image J. This outcome holds implications for diagnosing upper airway obstructions and post-orthodontic surgical monitoring.Keywords: airway analysis, airway segmentation, cone beam computed tomography, threshold
Procedia PDF Downloads 453497 Pyrazolylpyrazolines: Design, Synthesis and Biological Evaluation as Dual Acting Antimalarial-Antileishmanial Agents
Authors: Adnan Bekhit, Eskedar Lodebo, Ariaya Hymete, Hanan Ragab, Alaa El-Din Bekhit
Abstract:
Malaria and leishmaniasis have emerged as serious universal health problems throughout history of mankind. According to the WHO 2008 malarial report, half of the world population is at risk of malarial infection with an estimate of 1 million deaths occurring annually mainly in the African region. Furthermore, 12-15 million people are infected with Leishmaniasis worldwide. Despite the continuous introduction of a large number of agents for the treatment of malaria, there is still unmet medical needs due to the emergence of resistance. Resistance has occurred for almost all therapeutic agents approved for the treatment of malaria. Accordingly, it was the aim of this work to design and synthesis a group of antimalarial-antileshmanial agents that would show inhibitory activity against chloroquine-resistant strain of Plasmodium falciparum. The synthesized compounds were designed to contain a pyrazolylpyrazoline moiety having an aromatic group (p-tolyl or p-chlorophenyl) at N1-position of one pyrazoline ring due to the reports of promising activities of such compounds. A formyl or acyl substituent was introduced at the N1-position of the other pyrazoline ring, to investigate the effect of bulkiness of acyl substituents at this position. The synthesized compounds were evaluated for their in-vivo antimalarial activity against Plasmodium berghei infected mice at dose levels of 20 and 30 mg/Kg. the two most active compounds were evaluated for their antimalarial activity against chloroquin-resistant strain (RKL9) of Plasmodium falciparum. In addition, the synthesized compounds were tested for their in-vitro antileshmanial activity against Leishmania aethiopica promastigotes and amastigotes. For both antimalarial and antileishmanial activities, compounds having an N1-p-tolyl group at the first pyrazoline ring did not require bulkiness at the second pyrazoline ring nitrogen where the compound bearing an acetyl group proved to be the most active of the whole series. On the other hand, bulkiness at the N1-position of the second pyazoline ring was necessary in case of compounds carrying the p-chlorophenyl group, where the two derivatives having an N1-butanoyl and an N1-benzoyl moieties at the second pyrazoline showed the best activity. Furthermore, the toxicity of the active compounds were tested and were proved to be non-toxic at 125, 250 and 500 mg/Kg. In addition, docking of the most active compound (having a p-tolyl group at the first pyrazoline-N and an acetyl moiety on the other pyrazoline-N) was performed against dihydrofolate reductase enzyme.Keywords: pyrazoline derivatives, in-vivo antimalarial activity, docking, dihydrofolate reductase
Procedia PDF Downloads 3413496 High Temperature Volume Combustion Synthesis of Ti3Al with Low Porosities
Authors: Nese Ozturk Korpe, Muhammed H. Karas
Abstract:
Reaction synthesis, or combustion synthesis, is a processing technique in which the thermal activation energy of formation of a compound is sustained by its exothermic heat of reaction. The aim of the present study was to investigate the effect of high initial pressing pressures (420 MPa, 630 MPa, and 850 MPa) on porosity of Ti3Al which produced by volume combustion synthesis. Microstructure examinations were performed by optical microscope (OM) and scanning electron microscope (SEM). Phase analyses were performed with X-ray diffraction device (XRD). A significant decrease in porosity was obtained due to an increase in the initial pressing pressure.Keywords: Titanium Aluminide, Volume Combustion Synthesis, Intermetallic, Porosity
Procedia PDF Downloads 1723495 Mechanical and Microstructural Properties of Rotary-Swaged Wire of Commercial-Purity Titanium
Authors: Michal Duchek, Jan Palán, Tomas Kubina
Abstract:
Bars made of titanium grade 2 and grade 4 were subjected to rotary forging with up to 2.2 true strain reduction in the cross-section from 10 to 3.81 mm. During progressive deformation, grain refinement in the transverse direction took place. In the longitudinal direction, ultrafine microstructure has not developed. It has been demonstrated that titanium grade 2 strengthens more than grade 4. The ultimate tensile strength increased from 650 MPa to 1040 MPa in titanium grade 4. Hardness profiles on the cross section in both materials show an increase in the centre of the wire.Keywords: commercial-purity titanium, wire, rotary swaging, tensile test, hardness, modulus of elasticity, microstructure
Procedia PDF Downloads 2393494 Comparisons of Surveying with Terrestrial Laser Scanner and Total Station for Volume Determination of Overburden and Coal Excavations in Large Open-Pit Mine
Authors: B. Keawaram, P. Dumrongchai
Abstract:
The volume of overburden and coal excavations in open-pit mine is generally determined by conventional survey such as total station. This study aimed to evaluate the accuracy of terrestrial laser scanner (TLS) used to measure overburden and coal excavations, and to compare TLS survey data sets with the data of the total station. Results revealed that, the reference points measured with the total station showed 0.2 mm precision for both horizontal and vertical coordinates. When using TLS on the same points, the standard deviations of 4.93 cm and 0.53 cm for horizontal and vertical coordinates, respectively, were achieved. For volume measurements covering the mining areas of 79,844 m2, TLS yielded the mean difference of about 1% and the surface error margin of 6 cm at the 95% confidence level when compared to the volume obtained by total station.Keywords: mine, survey, terrestrial laser scanner, total station
Procedia PDF Downloads 3883493 Condition Monitoring of Railway Earthworks using Distributed Rayleigh Sensing
Authors: Andrew Hall, Paul Clarkson
Abstract:
Climate change is predicted to increase the number of extreme weather events intensifying the strain on Railway Earthworks. This paper describes the use of Distributed Rayleigh Sensing to monitor low frequency activity on a vulnerable earthworks sectionprone to landslides alongside a railway line in Northern Spain. The vulnerable slope is instrumented with conventional slope stability sensors allowing an assessment to be conducted of the application of Distributed Rayleigh Sensing as an earthwork condition monitoring tool to enhance the resilience of railway networks.Keywords: condition monitoring, railway earthworks, distributed rayleigh sensing, climate change
Procedia PDF Downloads 2083492 Constitutive Flo1p Expression on Strains Bearing Deletions in Genes Involved in Cell Wall Biogenesis
Authors: Lethukuthula Ngobese, Abin Gupthar, Patrick Govender
Abstract:
The ability of yeast cell wall-derived mannoproteins (glycoproteins) to positively contribute to oenological properties has been a key factor that stimulates research initiatives into these industrially important glycoproteins. In addition, and from a fundamental research perspective, yeast cell wall glycoproteins are involved in a wide range of biological interactions. To date, and to the best of our knowledge, our understanding of the fine molecular structure of these mannoproteins is fairly limited. Generally, the amino acid sequences of their protein moieties have been established from structural and functional analysis of the genomic sequence of these yeasts whilst far less information is available on the glycosyl moieties of these mannoproteins. A novel strategy was devised in this study that entails the genetic engineering of yeast strains that over-express and release cell wall-associated glycoproteins into the liquid growth medium. To this end, the Flo1p mannoprotein was overexpressed in Saccharomyces cerevisiae laboratory strains bearing a specific deletion in KNR4 and GPI7 genes involved in cell wall biosynthesis that have been previously shown to extracellularly hyper-secrete cell wall-associated glycoproteins. A polymerase chain reaction (PCR) -based cloning strategy was employed to generate transgenic yeast strains in which the native cell wall FLO1 glycoprotein-encoding gene is brought under transcriptional control of the constitutive PGK1 promoter. The modified Helm’s flocculation assay was employed to assess flocculation intensities of a Flo1p over-expressing wild type and deletion mutant as an indirect measure of their abilities to release the desired mannoprotein. The flocculation intensities of the transformed strains were assessed and all the strains showed similar intensities (>98% flocculation). To assess if mannoproteins were released into the growth medium, the supernatant of each strain was subjected to the BCA protein assay and the transformed Δknr4 strain showed a considerable increase in protein levels. This study has the potential to produce mannoproteins in sufficient quantities that may be employed in future investigations to understand their molecular structures and mechanisms of interaction to the benefit of both fundamental and industrial applications.Keywords: glycoproteins, genetic engineering, flocculation, over-expression
Procedia PDF Downloads 4163491 Coupling of Two Discretization Schemes for the Lattice Boltzmann Equation
Authors: Tobias Horstmann, Thomas Le Garrec, Daniel-Ciprian Mincu, Emmanuel Lévêque
Abstract:
Despite the efficiency and low dissipation of the stream-collide formulation of the Lattice Boltzmann (LB) algorithm, which is nowadays implemented in many commercial LBM solvers, there are certain situations, e.g. mesh transition, in which a classical finite-volume or finite-difference formulation of the LB algorithm still bear advantages. In this paper, we present an algorithm that combines the node-based streaming of the distribution functions with a second-order finite volume discretization of the advection term of the BGK-LB equation on a uniform D2Q9 lattice. It is shown that such a coupling is possible for a multi-domain approach as long as the overlap, or buffer zone, between two domains, is achieved on at least 2Δx. This also implies that a direct coupling (without buffer zone) of a stream-collide and finite-volume LB algorithm on a single grid is not stable. The critical parameter in the coupling is the CFL number equal to 1 that is imposed by the stream-collide algorithm. Nevertheless, an explicit filtering step on the finite-volume domain can stabilize the solution. In a further investigation, we demonstrate how such a coupling can be used for mesh transition, resulting in an intrinsic conservation of mass over the interface.Keywords: algorithm coupling, finite volume formulation, grid refinement, Lattice Boltzmann method
Procedia PDF Downloads 3803490 An Investigation on the Energy Absorption of Sandwich Panels With Aluminium Foam Core under Perforation Test
Authors: Minoo Tavakoli, Mojtaba Zebarjad, Golestanipour
Abstract:
Metallic sandwich structures with aluminum foam core are good energy absorbers. In this paper, perforation test were carried out on different samples to study energy absorption. In the experiments, effect of several parameters, i.e. skin thickness and thickness of foam core, on the energy absorption, delamination zone of back faces and deformation strain(φ) are discussed. Results show that increasing plates thickness will results in more absorbed energy and delamination. Moreover, thickening foam core has the same effect.Keywords: sandwich panel, aluminium foam, perforation, energy absorption
Procedia PDF Downloads 4233489 Tensile and Fracture Properties of Cast and Forged Composite Synthesized by Addition of in-situ Generated Al3Ti-Al2O3 Particles to Magnesium
Authors: H. M. Nanjundaswamy, S. K. Nath, S. Ray
Abstract:
TiO2 particles have been added in molten aluminium to result in aluminium based cast Al/Al3Ti-Al2O3 composite, which has been added then to molten magnesium to synthesize magnesium based cast Mg-Al/Al3Ti-Al2O3 composite. The nominal compositions in terms of Mg, Al, and TiO2 contents in the magnesium based composites are Mg-9Al-0.6TiO2, Mg-9Al-0.8TiO2, Mg-9Al-1.0TiO2 and Mg-9Al-1.2TiO2 designated respectively as MA6T, MA8T, MA10T and MA12T. The microstructure of the cast magnesium based composite shows grayish rods of intermetallics Al3Ti, inherited from aluminium based composite but these rods, on hot forging, breaks into smaller lengths decreasing the average aspect ratio (length to diameter) from 7.5 to 3.0. There are also cavities in between the broken segments of rods. β-phase in cast microstructure, Mg17Al12, dissolves during heating prior to forging and re-precipitates as relatively finer particles on cooling. The amount of β-phase also decreases on forging as segregation is removed. In both the cast and forged composite, the Brinell hardness increases rapidly with increasing addition of TiO2 but the hardness is higher in forged composites by about 80 BHN. With addition of higher level of TiO2 in magnesium based cast composite, yield strength decreases progressively but there is marginal increase in yield strength over that of the cast Mg-9 wt. pct. Al, designated as MA alloy. But the ultimate tensile strength (UTS) in the cast composites decreases with the increasing particle content indicating possibly an early initiation of crack in the brittle inter-dendritic region and their easy propagation through the interfaces of the particles. In forged composites, there is a significant improvement in both yield strength and UTS with increasing TiO2 addition and also, over those observed in their cast counterpart, but at higher addition it decreases. It may also be noted that as in forged MA alloy, incomplete recovery of forging strain increases the strength of the matrix in the composites and the ductility decreases both in the forged alloy and the composites. Initiation fracture toughness, JIC, decreases drastically in cast composites compared to that in MA alloy due to the presence of intermetallic Al3Ti and Al2O3 particles in the composite. There is drastic reduction of JIC on forging both in the alloy and the composites, possibly due to incomplete recovery of forging strain in both as well as breaking of Al3Ti rods and the voids between the broken segments of Al3Ti rods in composites. The ratio of tearing modulus to elastic modulus in cast composites show higher ratio, which increases with the increasing TiO2 addition. The ratio decreases comparatively more on forging of cast MA alloy than those in forged composites.Keywords: composite, fracture toughness, forging, tensile properties
Procedia PDF Downloads 2503488 Investigation on Behavior of Fixed-Ended Reinforced Concrete Deep Beams
Authors: Y. Heyrani Birak, R. Hizaji, J. Shahkarami
Abstract:
Reinforced Concrete (RC) deep beams are special structural elements because of their geometry and behavior under loads. For example, assumption of strain- stress distribution is not linear in the cross section. These types of beams may have simple supports or fixed supports. A lot of research works have been conducted on simply supported deep beams, but little study has been done in the fixed-end RC deep beams behavior. Recently, using of fixed-ended deep beams has been widely increased in structures. In this study, the behavior of fixed-ended deep beams is investigated, and the important parameters in capacity of this type of beams are mentioned.Keywords: deep beam, capacity, reinforced concrete, fixed-ended
Procedia PDF Downloads 3343487 Selection Effects on the Molecular and Abiotic Evolution of Antibiotic Resistance
Authors: Abishek Rajkumar
Abstract:
Antibiotic resistance can occur naturally given the selective pressure placed on antibiotics. Within a large population of bacteria, there is a significant chance that some of those bacteria can develop resistance via mutations or genetic recombination. However, a growing public health concern has arisen over the fact that antibiotic resistance has increased significantly over the past few decades. This is because humans have been over-consuming and producing antibiotics, which has ultimately accelerated the antibiotic resistance seen in these bacteria. The product of all of this is an ongoing race between scientists and the bacteria as bacteria continue to develop resistance, which creates even more demand for an antibiotic that can still terminate the newly resistant strain of bacteria. This paper will focus on a myriad of aspects of antibiotic resistance in bacteria starting with how it occurs on a molecular level and then focusing on the antibiotic concentrations and how they affect the resistance and fitness seen in bacteria.Keywords: antibiotic, molecular, mutation, resistance
Procedia PDF Downloads 3263486 Effect of Inoculum Ratio on Dark Fermentative Hydrogen Production
Authors: Zeynep Yilmazer Hitit, Patrick C. Hallenbeck
Abstract:
Fuel reserve requirements due to depletion of fossil fuels have increased interest in biohydrogen since the 1990’s. In fermentative hydrogen production, pure, mixed, and co-cultures can be used to produce hydrogen. Several previous studies have evaluated hydrogen production by pure cultures of Clostridium butyricum or Enterobacter aerogenes. Evaluating hydrogen production by co-culture of these microorganisms is an interestıng approach since E. aerogenes is a facultative microorganism with resistance to oxygen in contrast to the strict anaerobe C. butyricum, and therefore has the ability to maintain anaerobic conditions. It was found that using co-cultures of facultative E. aerogenes (as a reducing agent and H2 producer) and the obligate anaerobe C. butyricum for producing hydrogen increases the yield of hydrogen by about 50% compared to C. butyricum by itself. Also, using different types of microorganisms for hydrogen production eliminates the need to use expensive reducing agents. C. butyricum strain pre-cultured anaerobically at 37 0C for 15h by inoculating 100 mL of GP medium (pH 6.8) consisting of 1% glucose, 2% polypeptone, 0.2% KH2PO4, 0.05% yeast extract, 0.05% MgSO4. 7H2O and E. aerogenes strain was pre-cultured aerobically at 30 0C, 150 rpm for 9 h by inoculating 100 mL of TGY medium (pH 6.8), consisting of 0.1% glucose, 0.5% tryptone, 0.1% K2HPO4, 0.5% yeast extract. All duplicate batch experiments were conducted in 100 mL bottles with different inoculum ratios of Clostridium butyricum and Enterobater aerogenes (C:E) using 5x diluted rich media (GP) consisting of 2 g/L glucose, 4g/L polypeptone, 0.4 g/L KH2PO4, 0.1 g/L yeast extract, 0.1 MgSO4.7H2O. The range of inoculum ratio of C. butyricum to E. aerogenes were 2:1,4:1,8:1, 1:2,1:4, 1:8, 1:0, 0:1. Using glucose as a carbon source aided in the observation of microbial behavior as well as making the effect of inoculum ratio more evident. Nearly all the glucose in the medium was used to produce hydrogen, except at a 1:0 ratio of inoculum (i.e. containing only C. butyricum). Low glucose consumption leads to a higher hydrogen yield due to cumulative hydrogen production and consumption of glucose, but not as much as C:E, 8:1. The lowest hydrogen yield was achieved in 1:8 inoculum ratio of C:E, 71.9 mL, 1.007±0.01 mol H2/mol glucose and the highest cumulative hydrogen, hydrogen yield and dry cell weight were achieved in 8:1 inoculum ratio of C:E, 117.4 mL, 2.035±0.082 mol H2/mol glucose, 0.4 g/L respectively. In this study effect of inoculum ratio on dark fermentative biohydrogen production using C. butyricum and E. aerogenes was investigated. The maximum hydrogen yield of 2.035mol H2/mol glucose was obtained using 2g/L glucose, an initial pH of 6 and an inoculum ratio of C. butyricum to E. aerogenes of 8:1. Results showed that inoculum ratio is an important parameter on hydrogen production due to competition between the two microorganisms in using substrate for growth and production of by-products. The results presented here could be of great significance for further waste management studies using co-culture hydrogen production.Keywords: biohydrogen, Clostridium butyricum, dark fermentation, Enterobacter aerogenes, inoculum ratio in biohydrogen production
Procedia PDF Downloads 2383485 Integration of Microarray Data into a Genome-Scale Metabolic Model to Study Flux Distribution after Gene Knockout
Authors: Mona Heydari, Ehsan Motamedian, Seyed Abbas Shojaosadati
Abstract:
Prediction of perturbations after genetic manipulation (especially gene knockout) is one of the important challenges in systems biology. In this paper, a new algorithm is introduced that integrates microarray data into the metabolic model. The algorithm was used to study the change in the cell phenotype after knockout of Gss gene in Escherichia coli BW25113. Algorithm implementation indicated that gene deletion resulted in more activation of the metabolic network. Growth yield was more and less regulating gene were identified for mutant in comparison with the wild-type strain.Keywords: metabolic network, gene knockout, flux balance analysis, microarray data, integration
Procedia PDF Downloads 5793484 Conductive and Stretchable Graphene Nanoribbon Coated Textiles
Authors: Lu Gan, Songmin Shang, Marcus Chun Wah Yuen
Abstract:
A conductive and stretchable cotton fabric was prepared in this study through coating the graphene nanoribbon onto the cotton fabric. The mechanical and electrical properties of the prepared cotton fabric were then investigated. As shown in the results, the graphene nanoribbon coated cotton fabric had an improvement in both mechanical strength and electrical conductivity. Moreover, the resistance of the cotton fabric had a linear dependence on the strain applied to it. The prepared graphene nanoribbon coated cotton fabric has great application potentials in smart textile industry.Keywords: conductive fabric, graphene nanoribbon, coating, enhanced properties
Procedia PDF Downloads 3563483 Winkler Springs for Embedded Beams Subjected to S-Waves
Authors: Franco Primo Soffietti, Diego Fernando Turello, Federico Pinto
Abstract:
Shear waves that propagate through the ground impose deformations that must be taken into account in the design and assessment of buried longitudinal structures such as tunnels, pipelines, and piles. Conventional engineering approaches for seismic evaluation often rely on a Euler-Bernoulli beam models supported by a Winkler foundation. This approach, however, falls short in capturing the distortions induced when the structure is subjected to shear waves. To overcome these limitations, in the present work an analytical solution is proposed considering a Timoshenko beam and including transverse and rotational springs. The present research proposes ground springs derived as closed-form analytical solutions of the equations of elasticity including the seismic wavelength. These proposed springs extend the applicability of previous plane-strain models. By considering variations in displacements along the longitudinal direction, the presented approach ensures the springs do not approach zero at low frequencies. This characteristic makes them suitable for assessing pseudo-static cases, which typically govern structural forces in kinematic interaction analyses. The results obtained, validated against existing literature and a 3D Finite Element model, reveal several key insights: i) the cutoff frequency significantly influences transverse and rotational springs; ii) neglecting displacement variations along the structure axis (i.e., assuming plane-strain deformation) results in unrealistically low transverse springs, particularly for wavelengths shorter than the structure length; iii) disregarding lateral displacement components in rotational springs and neglecting variations along the structure axis leads to inaccurately low spring values, misrepresenting interaction phenomena; iv) transverse springs exhibit a notable drop in resonance frequency, followed by increasing damping as frequency rises; v) rotational springs show minor frequency-dependent variations, with radiation damping occurring beyond resonance frequencies, starting from negative values. This comprehensive analysis sheds light on the complex behavior of embedded longitudinal structures when subjected to shear waves and provides valuable insights for the seismic assessment.Keywords: shear waves, Timoshenko beams, Winkler springs, sol-structure interaction
Procedia PDF Downloads 63