Search results for: microstructure development
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 4284

Search results for: microstructure development

4224 Influence of Technology Parameters on Properties of AA6061/SiC Composites Produced By Kobo Method

Authors: J. Wozniak, M. Kostecki, K. Broniszewski, W. Bochniak, A. Olszyna

Abstract:

The influence of extrusion parameters on surface quality and properties of AA6061+x% vol. SiC (x = 0; 2,5; 5; 7,5;10) composites was discussed in this paper. The averages size of AA6061 and SiC particles were 10.6 μm and 0.42 μm, respectively. Two series of composites (I - compacts were preheated at extrusion temperature through 0.5 h and cooled by water directly after process; II - compacts were preheated through 3 hours and were not cooled) were consolidated via powder metallurgy processing and extruded by KoBo method. High values of density for both series of composites were achieved. Better surface quality was observed for II series of composites. Moreover, for these composites lower (compared to I series) but more uniform strength properties over the cross-section of the bar were noticed. Microstructure and Young-s modulus investigations were made.

Keywords: aluminum alloy, extrusion, metal matrix composites, microstructure

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1707
4223 Study of Metakaolin-Based Geopolymer with Addition of Polymer Admixtures

Authors: Olesia Mikhailova, Pavel Rovnaník

Abstract:

In the present work, metakaolin-based geopolymer including different polymer admixtures was studied. Different types of commercial polymer admixtures VINNAPAS® and polyethylene glycol of different relative molecular weight were used as polymer admixtures. The main objective of this work is to investigate the influence of different types of admixtures on the properties of metakaolin-based geopolymer mortars considering their different dosage. Mechanical properties, such as flexural and compressive strength were experimentally determined. Also, study of the microstructure of selected specimens by using a scanning electron microscope was performed. The results showed that the specimen with addition of 1.5% of VINNAPAS® 7016 F and 10% of polyethylene glycol 400 achieved maximum mechanical properties.

Keywords: Metakaolin, geopolymer, polymer admixtures, mechanical properties, microstructure.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1710
4222 Effect of Cow bone and Groundnut Shell Reinforced in Epoxy Resin on the Mechanical Properties and Microstructure of the Composites

Authors: O. I. Rufai, G. I. Lawal, B. O. Bolasodun, S. I. Durowaye, J. O. Etoh

Abstract:

It is an established fact that polymers have several physical limitations such as low stiffness and low resistance to impact on loading. Hence, polymers do not usually have requisite mechanical strength for application in various fields. The reinforcement by high strength fibers provides the polymer substantially enhanced mechanical properties and makes them more suitable for a large number of diverse applications. This research evaluates the effects of particulate Cow bone and Groundnut shell additions on the mechanical properties and microstructure of cow bone and groundnut shell reinforced epoxy composite in order to assess the possibility of using it as a material for engineering applications. Cow bone and groundnut shell particles reinforced with epoxy (CBRPC and GSRPC) was prepared by varying the cow bone and groundnut shell particles from 0-25 wt% with 5 wt% intervals. A Hybrid of the Cow bone and Groundnut shell (HGSCB) reinforce with epoxy was also prepared. The mechanical properties of the developed composites were investigated. Optical microscopy was used to examine the microstructure of the composites. The results revealed that mechanical properties did not increase uniformly with additions in filler but exhibited maximum properties at specific percentages of filler additions. From the Microscopic evaluation, it was discovered that homogeneity decreases with increase in % filler, this could be due to poor interfacial bonding.

Keywords: Groundnut shell reinforced polymer composite (GSRPC), Cow bone reinforced polymer composite (CBRPC), Hybrid of ground nutshell and cowbone (HGSCB).

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3018
4221 Investigation of Heat Affected Zone of Steel P92 Using the Thermal Cycle Simulator

Authors: Petr Mohyla, Ivo Hlavatý, Jiří Hrubý, Lucie Krejčí

Abstract:

This work is focused on mechanical properties and microstructure of heat affected zone (HAZ) of steel P92. The thermal cycle simulator was used for modeling a fine grained zone of HAZ. Hardness and impact toughness were measured on simulated samples. Microstructural analysis using optical microscopy was performed on selected samples. Achieved results were compared with the values of a real welded joint. The thermal cycle simulator allows transferring the properties of very small HAZ to the sufficiently large sample where the tests of the mechanical properties can be performed. A satisfactory accordance was found when comparing the microstructure and mechanical properties of real welds and simulated samples.

Keywords: Heat affected zone, impact test, thermal cycle simulator and time of tempering.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 929
4220 Temperature Evolution, Microstructure and Mechanical Properties of Heat-Treatable Aluminum Alloy Welded by Friction Stir Welding: Comparison with Tungsten Inert Gas

Authors: Saliha Gachi, Mouloud Aissani, Fouad Boubenider

Abstract:

Friction Stir Welding (FSW) is a solid-state welding technique that can join material without melting the plates to be welded. In this work, we are interested to demonstrate the potentiality of FSW for joining the heat-treatable aluminum alloy 2024-T3 which is reputed as difficult to be welded by fusion techniques. Thereafter, the FSW joint is compared with another one obtained from a conventional fusion process Tungsten Inert Gas (TIG). FSW welds are made up using an FSW tool mounted on a milling machine. Single pass welding was applied to fabricated TIG joint. The comparison between the two processes has been made on the temperature evolution, mechanical and microstructure behavior. The microstructural examination revealed that FSW weld is composed of four zones: Base metal (BM), Heat affected zone (HAZ), Thermo-mechanical affected zone (THAZ) and the nugget zone (NZ). The NZ exhibits a recrystallized equiaxed refined grains that induce better mechanical properties and good ductility compared to TIG joint where the grains have a larger size in the welded region compared with the BM due to the elevated heat input. The microhardness results show that, in FSW weld, the THAZ contains the lowest microhardness values and increase in the NZ; however, in TIG process, the lowest values are localized on the NZ.

Keywords: Friction stir welding, tungsten inert gaz, aluminum, microstructure.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 729
4219 Cladding of Al and Cu by Differential Speed Rolling

Authors: Tae Yun Chung, Jungho Moon, Tae Kwon Ha

Abstract:

Al/Cu clad sheet has been fabricated by using differential speed rolling (DSR) process, which caused severe shear deformation between Al and Cu plate to easily bond to each other. Rolling was carried out at 100 and 150oC with speed ratios from 1.4 to 2.2, in which the total thickness reduction was in the range between 14 and 46%. Interfacial microstructure and mechanical properties of Al/Cu clad were investigated by scanning electron microscope equipped with energy dispersive X-ray detector, and tension tests. The DSR process was very effective to provide a good interface for atoms diffusion during subsequent annealing. The strength of bonding was higher with the increasing speed ratio. Post heat treatment enhanced the mechanical properties of clad sheet by forming intermetallic compounds in the interface area. 

Keywords: Aluminum/Copper clad sheet, Differential speed rolling, Interface microstructure, Annealing, Tensile test.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2312
4218 Investigation of Mg and Zr Addition on the Mechanical Properties of Commercially Pure Al

Authors: Samiul Kaiser, M. S. Kaiser

Abstract:

The influence of Mg and Zr addition on mechanical properties such as hardness, tensile strength and impact energy of commercially pure Al are investigated. The microstructure and fracture behavior are also studied by using Optical and Scanning Electron Microscopy. It is observed that magnesium addition improves the mechanical properties of commercially pure Al at the expense of ductility due to formation of β (Al3Mg) and β (Al3Mg2) phase into the alloy. Zr addition also plays a positive role through grain refinement effect and the formation of metastable L12 Al3Zr precipitates. In addition, it is observed that the fractured surface of Mg added alloy is brittle and higher numbers of dimples are observed in case of Zr added alloy.

Keywords: Al-alloys, hardness, tensile strength, impact energy, microstructure.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 630
4217 Studies of Interfacial Microstructure and Mechanical Properties on Dissimilar Sheet Metal Combination Joints Using Laser Beam Welding

Authors: K. Kalaiselvan, A. Elango

Abstract:

Laser beam welding of dissimilar sheet metal combinations such as Ti/Al, SS/Al and Cu/Al are increasingly demanded due to high energy densities with less fusion and heat affected zones. A good weld joint strength involves combinations of dissimilar metals and the formation of solid solution in the weld pool. Many metal pairs suffer from significant intermetallic phase formation during welding which greatly reduces their strength. The three different sheet metal mentioned above is critically reviewed and phase diagram for the combinations are given. The aim of this study is to develop an efficient metal combinations and the influence on their interfacial characteristics. For that the following parameters such as weld geometry, residual distortion, micro hardness, microstructure and mechanical properties are analyzed systematically.

Keywords: Laser Beam Welding (LBW), dissimilar metals, Ti/Al, SS/Al and Cu/Al sheets.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2936
4216 Thermo-Mechanical Treatments of Cu-Ti Alloys

Authors: M. M. Morgham, A. A. Hameda, N. A. Zriba, H. A. Jawan

Abstract:

This paper aims to study the effect of cold work condition on the microstructure of Cu-1.5wt%Ti, and Cu-3.5wt%Ti and hence mechanical properties. The samples under investigation were machined, and solution heat treated. X-ray diffraction technique is used to identify the different phases present after cold deformation by compression and also different heat treatment and also measuring the relative quantities of phases present. The metallographic examination is used to study the microstructure of the samples. The hardness measurements were used to indicate the change in mechanical properties. The results are compared with the mechanical properties obtained by previous workers. Experiments on cold compression followed by aging of Cu-Ti alloys have indicated that the most efficient hardening of the material results from continuous precipitation of very fine particles within the matrix. These particles were reported to be β`-type, Cu4Ti phase. The β`-β transformation and particles coarsening within the matrix as well as long grain boundaries were responsible for the overaging of Cu-1.5wt%Ti and Cu-3.5wt%Ti alloys. It is well known that plate-like particles are β – type, Cu3Ti phase. Discontinuous precipitation was found to start at the grain boundaries and expand into grain interior. At the higher aging temperature, a classic Widmanstätten morphology forms giving rise to a coarse microstructure comprised of α and the equilibrium phase β. Those results were confirmed by X-ray analysis, which found that a few percent of Cu3Ti, β precipitates are formed during aging at high temperature for long time for both Cu- Ti alloys (i.e. Cu-1.5wt%Ti and Cu-3.5wt%Ti).

Keywords: Metallographic, hardness, precipitation, aging.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1691
4215 Effect of Aging Treatment on Mechanical Properties of Non-Flammable AZ91D Mg Alloy

Authors: Ju Hyun Won, Hyun Woo Lee, Seok Hong Min, Tae Kwon Ha

Abstract:

Microstructure and mechanical properties of AZ91D Mg alloys for nonflammable use, containing Ca and Y, were investigated in this study. Solid solution treatment of AZ91D Mg alloy with Ca and Y was successfully conducted at 420oC and supersaturated microstructure with almost all beta phases resolved into matrix was obtained. After solid solution treatment, the alloy was annealed at temperatures of 180 and 200oC for time intervals from 1 min to 48 hrs and hardness of each condition was measured by micro-Vickers method. Peak aging conditions were deduced from the results as at the temperature of 200oC for 10 hrs. Hot rolling was also carried out at 400oC by the reduction ratio of 0.6 through 5 passes followed by recrystallization treatment. Tensile and compressive properties were measured at room temperature on the specimens of each process, i.e. as-cast, solution treatment, hot rolling, and recrystallization.

Keywords: Mg alloy, AZ91D, nonflammable alloy, hot rolling, peak aging, tensile test.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1517
4214 Evaluation of Alloying Additions on the Microstructure and IMC Formation of Sn-Ag-Cu Solder on Cu and Ni (P) Substrates

Authors: S.O. Shazlin, M.S. Nurulakmal

Abstract:

Studies have shown that the SnAgCu solder family has been widely used as a replacement for conventional Sn-Pb solders. An attractive approach is by introducing alloying additives (rare earth elements (RE), Zn, Co, Fe, Ni, Sb) into the SnAgCu solder, which helps in refining the microstructure also improving the mechanical and wetting properties of the solder. The present work focuses on the effect of additions of 0.5% Ce and Fe into Sn-3.0Ag-0.5Cu solder, in attempt to reduce the intermetallic compound (IMC) growth and reflow properties of the solder on Cu and Ni (P) surface finish, as well as effects thermal aging on the formation of intermetallic compound (IMC) on different surface finish. Excessive intermetallic compound growth may effect the interface and solder joint due to the brittle nature of the intermetallic compounds. Thus, by introducing alloying elements, IMC layer thickness can be decrease, resulting in better joint and solder reliability.

Keywords: Alloying Elements, Cu and Ni (P) Substrate, Intermetallic Compound (IMC), Reflow, Thermal Aging.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1572
4213 Wear Mechanisms in High Speed Steel Gear Cutting Tools

Authors: M. Jalali Azizpour, H. Mohammadi majd

Abstract:

In this paper, the wear of high speed steel hobs during hobbing has been studied. The wear mechanisms are strongly influenced by the choice of cutting speed. At moderate and high cutting speeds three major wear mechanisms were identified: abrasion, mild adhesive and severe adhesive. The microstructure and wear behavior of two high speed steel grades (M2 and ASP30) has been compared. In contrast, a variation in chemical composition or microstructure of HSS tool material generally did not change the dominant wear mechanism. However, the tool material properties determine the resistance against the operating wear mechanism and consequently the tool life. The metallographic analysis and wear measurement at the tip of hob teeth included scanning electron microscopy and stereoscope microscopy. Roughness profilometery is used for measuring the gear surface roughness.

Keywords: abrasion, adhesion, cutting speed, hobbing, wear mechanism

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3243
4212 Effect of Heat Input on the Weld Metal Toughness of Chromium-Molybdenum Steel

Authors: M. S. Kaiser

Abstract:

An attempt has been made to determine the strength and impact properties of Cr-Mo steel weld and base materials by varying the current during manual metal arc welding. Toughness over a temperature range from -32 to 100°C of base, heat affected zone (HAZ) and weld zones at three current settings are made. It is observed that the deterioration in notch toughness at any zone with the temperature decreases. The values of notch toughness for all zones at -32°C are almost same for any current settings. The values of notch toughness at HAZ area are higher than that of weld area due to the coarsening of ferrite grain of HAZ occurs with higher heat input. From microhardness and microstructure result, it can be concluded that large inclusion content in weld deposit is the cause of lower notch toughness value.

Keywords: Chromium-Molybdenum steel, post-weld heat treatment, heat affected zone, microstructure.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3605
4211 The Relationship between Fatigue Crack Growth and Residual Stress in Rails

Authors: F. Husem, M. E. Turan, Y. Sun, H. Ahlatci, I. Tozlu

Abstract:

Residual stress and fatigue crack growth rates are important to determine mechanical behavior of rails. This study aims to make relationship between residual stress and fatigue crack growth values in rails. For this purpose, three R260 quality rails (0.6-0.8% C, 0.6-1.25 Mn) were chosen. Residual stress of samples was measured by cutting method that is related in railway standard. Then samples were machined for fatigue crack growth test and analyze was completed according to the ASTM E647 standard which gives information about parameters of rails for this test. Microstructure characterizations were examined by Light Optic Microscope (LOM). The results showed that residual stress change with fatigue crack growth rate. The sample has highest residual stress exhibits highest crack growth rate and pearlitic structure can be seen clearly for all samples by microstructure analyze.

Keywords: Residual stress, fatigue crack growth, R260, LOM, ASTM E647.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1610
4210 Characterising the Effects of Heat Treatment on 3CR12 and AISI 316 Stainless Steels

Authors: Esther T. Akinlabi, Stephen A. Akinlabi

Abstract:

This paper reports on the effects of heat treatment on 3CR12 and AISI 316 stainless steel grades. Heat treatment was conducted on the steel grades and cooled using two different media; air and water in order to study the effect of each medium on the evolving properties of the samples. The heat treated samples were characterized through the evolving microstructure and hardness. It was found that there was a significant grain size reduction in both the heat treated stainless steel specimens compared to the parent materials. The finer grain sizes were achieved as a result of impediment to growth of one phase by the other. The Vickers microhardness values of the heat treated samples were higher compared to the parent materials due to the fact that each of the steel grades had a proportion of martensitic structures in their microstructures thereby improving the integrity of the material.

Keywords: Austenite, Ferrite, Grain size, Hardness, Martensite, Microstructure and stainless steel.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4360
4209 The Effects of Electromagnetic Stirring on Microstructure and Properties of γ-TiAl Based Alloys Fabricated by Selective Laser Melting Technique

Authors: A. Ismaeel, C. S. Wang, D. S. Xu

Abstract:

The γ-TiAl based Ti-Al-Mn-Nb alloys were fabricated by selective laser melting (SLM) on the TC4 substrate. The microstructures of the alloys were investigated in detail. The results reveal that the alloy without electromagnetic stirring (EMS) consists of γ-TiAl phase with tetragonal structure and α2-Ti3Al phase with hcp structure, while the alloy with applied EMS consists of γ-TiAl, α2-Ti3Al and α-Ti with hcp structure, and the morphological structure of the alloy without EMS which exhibits near lamellar structure and the alloy with EMS shows duplex structure, the alloy without EMS shows some microcracks and pores while they are not observed in the alloy without EMS. The microhardness and wear resistance values decrease with applied EMS.

Keywords: Selective laser melting, γ-TiAl based alloys, microstructure, properties, electromagnetic stirring.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 760
4208 Effects of the Sintering Process on Properties of Triaxial Electrical Porcelain from Ugandan Ceramic Minerals

Authors: Peter W. Olupot, Stefan Jonsson, Joseph K. Byaruhanga

Abstract:

Porcelain specimens were fired at 6C/min to 1250C (dwell time 0.5-3h) and cooled at 6C/min to room temperature. Additionally, three different slower firing/cooling cycles were tried. Sintering profile and effects on MOR, crystalline phase content and morphology were investigated using dilatometry, 4-point bending strength, XRD and FEG-SEM respectively. Industrial-sized specimens prepared using the promising cycle were tested basing on the ANSI standards. Increasing dwell time from 1h to 3h at peak temperature of 1250C resulted in neither a significant effect on the quartz and mullite content nor MOR. Reducing the firing/cooling rate to below 6C/min, for peak temperature of 1250C (dwell time of 1h) does not result in improvement of strength of porcelain. The industrial sized specimen exhibited flashover voltages of 20.3kV (dry) and 9.3kV (wet) respectively, transverse strength of 12.5kN and bulk density of 2.27g/cm3, which are satisfactory. There was however dye penetration during porosity test. KeywordsDwell time, Microstructure, Porcelain, Strength.

Keywords: Dwell time, Microstructure, Porcelain, Strength.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2940
4207 Fiber Microstructure in Solanum Found in Thailand

Authors: Aree Thongpukdee, Chockpisit Thepsithar, Sujitra Timchookul

Abstract:

The study aimed to investigate characteristics of vegetative tissue for taxonomic purpose and possibly trend of waste application in industry. Stems and branches of 15 species in Solanum found in Thailand were prepared for fiber and examined by light microscopy. Microstructural characteristic data of fiber i.e. fiber length and width, fiber lumen diameter and fiber cell wall thickness were recorded. The longest average fiber cell length (>3.9 mm.) were obtained in S. lycopersicum L. and S. tuberosum L. Fiber cells from S. lycopersicum also revealed the widest average diameter of whole cell and its lumen at >45.5 μm and >29 μm respectively. However fiber cells with thickest wall of > 9.6 μm were belonged to the ornamental tree species, S. wrightii Benth. The results showed that the slenderness ratio, Runkel ratio, and flexibility coefficient, with potentially suitable for feedstock in paper industry fell in 4 exotic species, i.e. Solanumamericanum L., S. lycopersicum, S. seaforthianum Andr., and S. tuberosum L

Keywords: Fiber, microstructure, Solanaceae, Solanum.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1618
4206 Deformability of the Rare Earth Metal Modified Metastable-β Alloy Ti-15Mo

Authors: F. Brunke, L. Waalkes, C. Siemers

Abstract:

Due to reduced stiffness, research on second generation titanium alloys for implant applications, like the metastable β-titanium alloy Ti-15Mo, become more and more important in the recent years. The machinability of these alloys is generally poor leading to problems during implant production and comparably large production costs. Therefore, in the present study, Ti-15Mo was alloyed with 0.8 wt.-% of the rare earth metals lanthanum (Ti-15Mo+0.8La) and neodymium (Ti-15Mo+0.8Nd) to improve its machinability. Their microstructure consisted of a titanium matrix and micrometer-size particles of the rare earth metals and two of their oxides. The particles stabilized the microstructure as grain growth was minimized. As especially the ductility might be affected by the precipitates, the behavior of Ti-15Mo+0.8La and Ti- 15Mo+0.8Nd was investigated during static and dynamic deformation at elevated temperature to develop a processing route. The resulting mechanical properties (static strength and ductility) were similar in all investigated alloys.

Keywords: Ti-15Mo, Titanium alloys, Rare earth metals, Free-machining alloy.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3685
4205 The Temperature Effects on the Microstructure and Profile in Laser Cladding

Authors: P. C. Chiu, Jehnming Lin

Abstract:

In this study, a 50-W CO2 laser was used for the clad of 304L powders on the stainless steel substrate with a temperature sensor and image monitoring system. The laser power and cladding speed and focal position were modified to achieve the requirement of the workpiece flatness and mechanical properties. The numerical calculation is based on ANSYS to analyze the temperature change of the moving heat source at different surface positions when coating the workpiece, and the effect of the process parameters on the bath size was discussed. The temperature of stainless steel powder in the nozzle outlet reacting with the laser was simulated as a process parameter. In the experiment, the difference of the thermal conductivity in three-dimensional space is compared with single-layer cladding and multi-layer cladding. The heat dissipation pattern of the single-layer cladding is the steel plate and the multi-layer coating is the workpiece itself. The relationship between the multi-clad temperature and the profile was analyzed by the temperature signal from an IR pyrometer.

Keywords: Laser cladding, temperature, profile, microstructure.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1018
4204 Aging Effect on Mechanical Behavior of Duplex Satinless Steel

Authors: Jungho Moon, Tae Kwon Ha

Abstract:

Effect of alloying on the microstructure and mechanical properties of heat-resisting duplex stainless steel (DSS) for Mg production was investigated in this study. 25Cr-8Ni based DSS’s were cast into rectangular ingots of which the dimension was 350×350×100 mm3 . Nitrogen and Yttrium were added in the range within 0.3 in weight percent. Phase equilibrium was calculated using the FactSage®, thermodynamic software. Hot exposure, high temperature tensile and compression tests were conducted on the ingots at 1230oC, which is operation temperature employed for Mg production by Silico-thermic reduction. The steel with N and Y showed much higher strength than 310S alloy in both tensile and compression tests. By thermal exposition at 1230oC for 200 hrs, hardness of DSS containing N and Y was found to increase. Hot workability of the heat-resisting DSS was evaluated by employing hot rolling at 1230 oC. Hot shortness was observed in the ingot with N and found to disappear after addition of Y.

Keywords: Duplex Stainless Steel, alloying elements, eutectic carbides, microstructure, aging treatment.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1421
4203 Microstructure and Mechanical Behaviuor of Rotary Friction Welded Titanium Alloys

Authors: M. Avinash, G. V. K. Chaitanya, Dhananjay Kumar Giri, Sarala Upadhya, B. K. Muralidhara

Abstract:

Ti-6Al-4V alloy has demonstrated a high strength to weight ratio as well as good properties at high temperature. The successful application of the alloy in some important areas depends on suitable joining techniques. Friction welding has many advantageous features to be chosen for joining Titanium alloys. The present work investigates the feasibility of producing similar metal joints of this Titanium alloy by rotary friction welding method. The joints are produced at three different speeds and the performances of the welded joints are evaluated by conducting microstructure studies, Vickers Hardness and tensile tests at the joints. It is found that the weld joints produced are sound and the ductile fractures in the tensile weld specimens occur at locations away from the welded joints. It is also found that a rotational speed of 1500 RPM can produce a very good weld, with other parameters kept constant.

Keywords: Rotary friction weld, rotational speed, Ti-6Al-4V, weld structures.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2550
4202 Enhancement of Raman Scattering using Photonic Nanojet and Whispering Gallery Mode of a Dielectric Microstructure

Authors: A. Arya, R. Laha, V. R. Dantham

Abstract:

We report the enhancement of Raman scattering signal by one order of magnitude using photonic nanojet (PNJ) of a lollipop shaped dielectric microstructure (LSDM) fabricated by a pulsed CO₂ laser. Here, the PNJ is generated by illuminating sphere portion of the LSDM with non-resonant laser. Unlike the surface enhanced Raman scattering (SERS) technique, this technique is simple, and the obtained results are highly reproducible. In addition, an efficient technique is proposed to enhance the SERS signal with the help of high quality factor optical resonance (whispering gallery mode) of a LSDM. From the theoretical simulations, it has been found that at least an order of magnitude enhancement in the SERS signal could be achieved easily using the proposed technique. We strongly believe that this report will enable the research community for improving the Raman scattering signals.

Keywords: Localized surface plasmons, photonic nanojet, SERS, whispering gallery mode.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1060
4201 A Study for Carbonation Degree on Concrete using a Phenolphthalein Indicator and Fourier-Transform Infrared Spectroscopy

Authors: Ho Jae Lee, Do Gyeum Kim, Jang Hwa Lee, Myoung Suk Cho

Abstract:

A concrete structure is designed and constructed for its purpose of use, and is expected to maintain its function for the target durable years from when it was planned. Nevertheless, as time elapses the structure gradually deteriorates and then eventually degrades to the point where the structure cannot exert the function for which it was planned. The performance of concrete that is able to maintain the level of the performance required over the designed period of use as it has less deterioration caused by the elapse of time under the designed condition is referred to as Durability. There are a number of causes of durability degradation, but especially chloride damage, carbonation, freeze-thaw, etc are the main causes. In this study, carbonation, one of the main causes of deterioration of the durability of a concrete structure, was investigated via a microstructure analysis technique. The method for the measurement of carbonation was studied using the existing indicator method, and the method of measuring the progress of carbonation in a quantitative manner was simultaneously studied using a FT-IR (Fourier-Transform Infrared) Spectrometer along with the microstructure analysis technique.

Keywords: Concrete, Carbonation, Microsturcture, FT-IR

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4591
4200 Study of Stress Wave Propagation with NHDMOC

Authors: G.Y. Zhang , M.L. Xu, R.Q. Zhang, W.H. Tang

Abstract:

MOC (method of cell) is a new method of investigating wave propagating in material with periodic microstructure, and can reflect the effect of microstructure. Wave propagation in periodically laminated medium consisting of linearly elastic layers can be treated as a special application of this method. In this paper, it was used to simulate the dynamic response of carbon-phenolic to impulsive loading under certain boundary conditions. From the comparison between the results obtained from this method and the exact results based on propagator matrix theory, excellent agreement is achieved. Conclusion can be made that the oscillation periodicity is decided by the thickness of sub-cells. In the end, the NHDMOC method, which permits studying stress wave propagation with one dimensional strain, was applied to study the one-dimensional stress wave propagation. In this paper, the ZWT nonlinear visco-elastic constitutive relationship with 7 parameters, NHDMOC, and corresponding equations were deduced. The equations were verified, comparing the elastic stress wave propagation in SHPB with, respectively, the elastic and the visco-elastic bar. Finally the dispersion and attenuation of stress wave in SHPB with visco-elastic bar was studied.

Keywords: MOC, NHDMOC, visco-elastic, wave propagation

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1875
4199 Experimental Determination of Large Strain Localization in Cut Steel Chips

Authors: A. Simoneau

Abstract:

Metal cutting is a severe plastic deformation process involving large strains, high strain rates, and high temperatures. Conventional analysis of the chip formation process is based on bulk material deformation disregarding the inhomogeneous nature of the material microstructure. A series of orthogonal cutting tests of AISI 1045 and 1144 steel were conducted which yielded similar process characteristics and chip formations. With similar shear angles and cut chip thicknesses, shear strains for both chips were found to range from 2.0 up to 2.8. The manganese-sulfide (MnS) precipitate in the 1144 steel has a very distinct and uniform shape which allows for comparison before and after chip formation. From close observations of MnS precipitates in the cut chips it is shown that the conventional approach underestimates plastic strains in metal cutting. Experimental findings revealed local shear strains around a value of 6. These findings and their implications are presented and discussed.

Keywords: Machining, metal cutting, microstructure, plastic strains, local strain.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2071
4198 Compressive Strength and Interfacial Transition Zone Characteristic of Geopolymer Concrete with Different Cast In-Situ Curing Conditions

Authors: Muhd Fadhil Nuruddin, Andri Kusbiantoro, Sobia Qazi, Nasir Shafiq

Abstract:

The compressive strength development through polymerization process of alkaline solution and fly ash blended with Microwave Incinerated Rice Husk Ash (MIRHA) is described in this paper. Three curing conditions, which are hot gunny curing, ambient curing, and external humidity curing are investigated to obtain the suitable curing condition for cast in situ provision. Fly ash was blended with MIRHA at 3%, 5%, and 7% to identify the effect of blended mixes to the compressive strength and microstructure properties of geopolymer concrete. Compressive strength results indicated an improvement in the strength development with external humidity curing concrete samples compared to hot gunny curing and ambient curing. Blended mixes also presented better performance than control mixes. Improvement of interfacial transition zone (ITZ) and micro structure in external humidity concrete samples were also identified compared to hot gunny and ambient curing.

Keywords: Compressive Strength, alkaline solution, fly ash, geopolymer, ITZ, MIRHA

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2795
4197 Influence of Ti, B, and Sr on Microstructure, Mechanical and Tribological Properties of as Cast, Cast Aged, and Forge Aged A356 Alloy – A Comparative Study

Authors: R. V. Kurahatti, D. G. Mallapur, K. Rajendra Udupa

Abstract:

In the present work, a comparative study on the microstructure and mechanical properties of as cast, cast aged and forged aged A356 alloy has been investigated. The study reveals that mechanical properties of A356 alloy are highly influenced by melt treatment and solid state processing. Cast aged alloys achieve highest strength and hardness compared to as cast and forge aged ones. Ones treated with combined addition of grain refiners and modifiers achieve maximum strength and hardness. Cast aged A356 alloy possesses higher wear resistance compared to as cast and forge aged ones. Forging improves both strength and ductility of alloys over as cast ones. However, the improvement in ductility is perceptible only for properly grain refined and modified alloys. Ones refined with 0.65% Al-3Ti shows highest improvement in ductility while ones treated with 0.20% Al-10Sr exhibits less improvement in ductility.

Keywords: Forged A356 alloy, Grain refinement, Modification, Wear

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2645
4196 Impact of Financial System’s Development on Economic Development: An Empirical Investigation

Authors: Vilma Deltuvaitė

Abstract:

Comparisons of financial development across countries are central to answering many of the questions on factors leading to economic development. For this reason this study analyzes the implications of financial system’s development on country’s economic development. The aim of the article: to analyze the impact of financial system’s development on economic development. The following research methods were used: systemic, logical and comparative analysis of scientific literature, analysis of statistical data, time series model (Autoregressive Distributed Lag (ARDL) Model). The empirical results suggest about positive short and long term effect of stock market development on GDP per capita.

Keywords: Banking sector, economic development, financial system’s development, stock market, private bond market.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2083
4195 Production of Spherical Cementite within Bainitic Matrix Microstructures in High Carbon Powder Metallurgy Steels

Authors: O. Altuntaş, A. Güral

Abstract:

The hardness-microstructure relationships of spherical cementite in bainitic matrix obtained by a different heat treatment cycles carried out to high carbon powder metallurgy (P/M) steel were investigated. For this purpose, 1.5 wt.% natural graphite powder admixed in atomized iron powders and the mixed powders were compacted under 700 MPa at room temperature and then sintered at 1150 °C under a protective argon gas atmosphere. The densities of the green and sintered samples were measured via the Archimedes method. A density of 7.4 g/cm3 was obtained after sintering and a density of 94% was achieved. The sintered specimens having primary cementite plus lamellar pearlitic structures were fully quenched from 950 °C temperature and then over-tempered at 705 °C temperature for 60 minutes to produce spherical-fine cementite particles in the ferritic matrix. After by this treatment, these samples annealed at 735 °C temperature for 3 minutes were austempered at 300 °C salt bath for a period of 1 to 5 hours. As a result of this process, it could be able to produced spherical cementite particle in the bainitic matrix. This microstructure was designed to improve wear and toughness of P/M steels. The microstructures were characterized and analyzed by SEM and micro and macro hardness.

Keywords: Powder metallurgy steel, heat treatment, bainite, spherical cementite.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 922