WASET
	%0 Journal Article
	%A M. M. Morgham and  A. A. Hameda and  N. A. Zriba and  H. A. Jawan
	%D 2014
	%J International Journal of Materials and Metallurgical Engineering
	%B World Academy of Science, Engineering and Technology
	%I Open Science Index 86, 2014
	%T Thermo-Mechanical Treatments of Cu-Ti Alloys
	%U https://publications.waset.org/pdf/10001927
	%V 86
	%X This paper aims to study the effect of cold work
condition on the microstructure of Cu-1.5wt%Ti, and Cu-3.5wt%Ti
and hence mechanical properties. The samples under investigation
were machined, and solution heat treated. X-ray diffraction technique
is used to identify the different phases present after cold deformation
by compression and also different heat treatment and also measuring
the relative quantities of phases present. The metallographic
examination is used to study the microstructure of the samples. The
hardness measurements were used to indicate the change in
mechanical properties. The results are compared with the mechanical
properties obtained by previous workers. Experiments on cold
compression followed by aging of Cu-Ti alloys have indicated that
the most efficient hardening of the material results from continuous
precipitation of very fine particles within the matrix. These particles
were reported to be β`-type, Cu4Ti phase. The β`-β transformation
and particles coarsening within the matrix as well as long grain
boundaries were responsible for the overaging of Cu-1.5wt%Ti and
Cu-3.5wt%Ti alloys. It is well known that plate-like particles are β –
type, Cu3Ti phase. Discontinuous precipitation was found to start at
the grain boundaries and expand into grain interior. At the higher
aging temperature, a classic Widmanstätten morphology forms giving
rise to a coarse microstructure comprised of α and the equilibrium
phase β. Those results were confirmed by X-ray analysis, which
found that a few percent of Cu3Ti, β precipitates are formed during
aging at high temperature for long time for both Cu- Ti alloys (i.e.
Cu-1.5wt%Ti and Cu-3.5wt%Ti).

	%P 175 - 181