Studies of Interfacial Microstructure and Mechanical Properties on Dissimilar Sheet Metal Combination Joints Using Laser Beam Welding
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 33093
Studies of Interfacial Microstructure and Mechanical Properties on Dissimilar Sheet Metal Combination Joints Using Laser Beam Welding

Authors: K. Kalaiselvan, A. Elango

Abstract:

Laser beam welding of dissimilar sheet metal combinations such as Ti/Al, SS/Al and Cu/Al are increasingly demanded due to high energy densities with less fusion and heat affected zones. A good weld joint strength involves combinations of dissimilar metals and the formation of solid solution in the weld pool. Many metal pairs suffer from significant intermetallic phase formation during welding which greatly reduces their strength. The three different sheet metal mentioned above is critically reviewed and phase diagram for the combinations are given. The aim of this study is to develop an efficient metal combinations and the influence on their interfacial characteristics. For that the following parameters such as weld geometry, residual distortion, micro hardness, microstructure and mechanical properties are analyzed systematically.

Keywords: Laser Beam Welding (LBW), dissimilar metals, Ti/Al, SS/Al and Cu/Al sheets.

Digital Object Identifier (DOI): doi.org/10.5281/zenodo.1099080

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2978

References:


[1] M. Kreimeyer. F. Wagner, and F. Vollertsen, Optics and Lasers in Engineering (2005).43, 9.
[2] E. Anawa., O. M. Elmabrouk, and A. Olabi, in IEEM 2009. IEEE “International Conference on Industrial Engineering and Engineering Management”, (2009) in: edited by IEEE (IEEE, Piscataway, N.J).
[3] A. Saliger, Diploma thesis, Technische Universität, 2010.
[4] Sepold G., Schubert E, and Zerner I. “Laser beam joining of dissimilar materials”, (1999). IIW-paper IV 734-99, Lisbon.
[5] Davis JR, “Aluminum and aluminum alloys”,(1994). ASM International handbook. ASM International.
[6] Michael Kreimeyer, Florian Wagner, and Frank Vollertsen, “Laser processing of aluminum–titanium-tailored Blanks”, (2005). Optics and Lasers in Engineering 43, 1021–1035.
[7] Wo¨hlert S, and Fru¨hstadien der Phasenbildung, “System Titan- Aluminium”, (1995). Dissertation, Technische Universita¨ t Hamburg- Harburg.
[8] Lison R., Verbindungsschwei Xen unterschiedlicher, Werkstoffe— exemplarisch vorgestellt. In: Jahrbuch Schwei Xtechnik 99. Du¨ sseldorf. Herausgeber: DVS—Deutscher Verband fu¨ r Schwei Xen und verwandte Verfahren e.V; (1999). p. 35–48.
[9] International Aluminium Institute, “Improving Sustainability in the Transport Sector Through Weight Reduction and the Application of Aluminium”, (2008). http://www.world-aluminium.org/ cache/ fl0000172.pdf.
[10] European Aluminum Association, “Aluminium in cars”, (2008), http://www.eaa.net/upl/ 4/en/ doc/ Aluminium_in_cars..pdf.
[11] C.M. Wayman, “Introduction to the crystallography of Martensitic Transformations”,(1964). Macmillan, New York.
[12] Hyatt, and Calvin V. ‘Review of Literature Related to Microstructural Development During Laser Surface Engineering of Nickel Aluminium Bronze”,(1997). Technical Memorandum, 31-59.
[13] Zhihua Song., KazuhiroNakata, AipingWu, and JinsunLiao, “Interfacial microstructure and mechanical property of Ti6Al4V/A6061 dissimilar joint by direct laser brazing without filler metal and groove”, (2013). Materials Science & Engineering A 560 , 111–120.
[14] Ming Gao., Cong Chen., Yunze Gu, and Xiaoyan Zeng, “Microstructure and Tensile Behavior of Laser Arc Hybrid Welded Dissimilar Al and Ti Alloys”, (2014). Materials, 7, 1590-1602.
[15] Zhang. C., Li. G, and Gao. M “Microstructure and process characterization of laser-cold metal transfer hybrid welding of AA6061 aluminum alloy”, (2013). Int. J. Adv. Manuf. Technol, 68, 1253–1260.
[16] F. Möller*. M., Grden. C., Thomy, and F. Vollertsen, “Combined Laser Beam Welding and Brazing Process for Aluminium Titanium Hybrid Structures”,(2011). Physics Procedia 12, 215–223.
[17] W. V. Vaidya., M. Horstmann., V. Ventzke., B. Petrovski., M. Koc¸ak., R. Kocik, and G. Tempus, “Improving interfacial properties of a laser beam welded dissimilar joint of aluminium AA6056 and titanium Ti6Al4V for aeronautical applications”, (2010). J Mater Sci 45:6242– 6254.
[18] Shuhai Chen., Liqun Li., Yanbin Chen, and Jihua Huang, “Joining mechanism of Ti/Al dissimilar alloys during laser welding-brazing process”, (2011). Journal of Alloys and Compounds 509,891–898.
[19] Gerhard Liedl, Alexander Kratky, Matthias Mayr, and Alexandra Saliger, “Laser Assisted Joining of Dissimilar Materials”,(2011). -ICFProcessing, Performance and Failure Analysis of Engineering Materials, 14-17 Nov. Luxor, Egypt.
[20] Michael Kreimeyer, Florian Wagner, and Frank Vollertsen, “Laser processing of aluminum–titanium-tailored blanks”, (2005). Optics and Lasers in Engineering 43, 1021–1035.
[21] M. Schimek, A. Springer, S. Kaierle, D. Kracht, and V. Wesling, “Laserwelded dissimilar steel-aluminum seams for automotive lightweight construction”,(2012). Physics Procedia 39, 43 – 50.
[22] M.J. Zhang., G.Y. Chen., Y. Zhang, and K.R. Wu, “Research on microstructure and mechanical properties of laser keyhole welding– brazing of automotive galvanized steel to aluminum alloy”, (2013). Materials and Design 45, 24–30.
[23] A. Kouadri-David, and PSM Team, “Study of metallurgic and mechanical properties of laser welded heterogeneous joints between DP600 galvanised steel and aluminium 6082’, (2014) Materials and Design 54 184–195.
[24] C Thomy, and F Vollertsen, “Laser -MIG Hybrid welding of aluminium to steel – Effect of process parameters on joint properties”, (2009). XII- 1958-09, BIAS Bremer Institut für angewandte Strahltechnik, Bremen, Germany.
[25] M.Theron., C.Van Rooyan, and L.H Ivanchev, “CW ND: YAG Laser welding of dissimilar sheet metals”. Paper # 803, National laser center, CSIR, South Africa.
[26] M. Jandaghi., P. Parvin., M. J. Torkamany, and J. Sabbaghzadeh, “Alloying elemental change of SS-316 and Al-5754 during laser welding using real time laser induced breakdown spectroscopy (LIBS) accompanied by EDX and PIXE microanalysis”, (2010). Physics Procedia 5, 107–114.
[27] Tobias Solchenbach, Peter Plapper, and Wayne Cai, ‘Electrical performance of laser braze-welded aluminum–copper interconnects”, (2014). Journal of Manufacturing Processes xxx , xxx–xxx.
[28] ASM handbook: volume 03, “alloy phase diagrams”, (1992). ASM International.
[29] Xiao Wang., Chunxing Gu., Yuanyuan Zheng., Zongbao Shen, and Huixia Liu, “Laser shock welding of aluminum/aluminum and aluminum/copper plates”, (2014). Materials and Design 56, 26–30.
[30] Tobias Solchenbach, and Peter Plapper, “Mechanical characteristics of laser braze-welded aluminium–copper connections”, (2013) Optics & Laser Technology 54, 249–256.
[31] T. Solchenbach, P. Plapper, and “Combined Laser Beam Braze-Welding Process for Fluxless Al-Cu Connections”, (2013). Laser Technology Competence Centre, Research Unit in Engineering Science, University of Luxembourg.