Search results for: chip hotspots
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 186

Search results for: chip hotspots

126 Music-Inspired Harmony Search Algorithm for Fixed Outline Non-Slicing VLSI Floorplanning

Authors: K. Sivasubramanian, K. B. Jayanthi

Abstract:

Floorplanning plays a vital role in the physical design process of Very Large Scale Integrated (VLSI) chips. It is an essential design step to estimate the chip area prior to the optimized placement of digital blocks and their interconnections. Since VLSI floorplanning is an NP-hard problem, many optimization techniques were adopted in the literature. In this work, a music-inspired Harmony Search (HS) algorithm is used for the fixed die outline constrained floorplanning, with the aim of reducing the total chip area. HS draws inspiration from the musical improvisation process of searching for a perfect state of harmony. Initially, B*-tree is used to generate the primary floorplan for the given rectangular hard modules and then HS algorithm is applied to obtain an optimal solution for the efficient floorplan. The experimental results of the HS algorithm are obtained for the MCNC benchmark circuits.

Keywords: Floor planning, harmony search, non-slicing floorplan, very large scale integrated circuits.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1914
125 Using the PGAS Programming Paradigm for Biological Sequence Alignment on a Chip Multi-Threading Architecture

Authors: M. Bakhouya, S. A. Bahra, T. El-Ghazawi

Abstract:

The Partitioned Global Address Space (PGAS) programming paradigm offers ease-of-use in expressing parallelism through a global shared address space while emphasizing performance by providing locality awareness through the partitioning of this address space. Therefore, the interest in PGAS programming languages is growing and many new languages have emerged and are becoming ubiquitously available on nearly all modern parallel architectures. Recently, new parallel machines with multiple cores are designed for targeting high performance applications. Most of the efforts have gone into benchmarking but there are a few examples of real high performance applications running on multicore machines. In this paper, we present and evaluate a parallelization technique for implementing a local DNA sequence alignment algorithm using a PGAS based language, UPC (Unified Parallel C) on a chip multithreading architecture, the UltraSPARC T1.

Keywords: Partitioned Global Address Space, Unified Parallel C, Multicore machines, Multi-threading Architecture, Sequence alignment.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1347
124 Formal Verification of Cache System Using a Novel Cache Memory Model

Authors: Guowei Hou, Lixin Yu, Wei Zhuang, Hui Qin, Xue Yang

Abstract:

Formal verification is proposed to ensure the correctness of the design and make functional verification more efficient. As cache plays a vital role in the design of System on Chip (SoC), and cache with Memory Management Unit (MMU) and cache memory unit makes the state space too large for simulation to verify, then a formal verification is presented for such system design. In the paper, a formal model checking verification flow is suggested and a new cache memory model which is called “exhaustive search model” is proposed. Instead of using large size ram to denote the whole cache memory, exhaustive search model employs just two cache blocks. For cache system contains data cache (Dcache) and instruction cache (Icache), Dcache memory model and Icache memory model are established separately using the same mechanism. At last, the novel model is employed to the verification of a cache which is module of a custom-built SoC system that has been applied in practical, and the result shows that the cache system is verified correctly using the exhaustive search model, and it makes the verification much more manageable and flexible.

Keywords: Cache system, formal verification, novel model, System on Chip (SoC).

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2241
123 The Excess Loop Delay Calibration in a Bandpass Continuous-Time Delta Sigma Modulators Based on Q-Enhanced LC Filter

Authors: Sorore Benabid

Abstract:

The Q-enhanced LC filters are the most used architecture in the Bandpass (BP) Continuous-Time (CT) Delta-Sigma (ΣΔ) modulators, due to their: high frequencies operation, high linearity than the active filters and a high quality factor obtained by Q-enhanced technique. This technique consists of the use of a negative resistance that compensate the ohmic losses in the on-chip inductor. However, this technique introduces a zero in the filter transfer function which will affect the modulator performances in term of Dynamic Range (DR), stability and in-band noise (Signal-to-Noise Ratio (SNR)). In this paper, we study the effect of this zero and we demonstrate that a calibration of the excess loop delay (ELD) is required to ensure the best performances of the modulator. System level simulations are done for a 2ndorder BP CT (ΣΔ) modulator at a center frequency of 300MHz. Simulation results indicate that the optimal ELD should be reduced by 13% to achieve the maximum SNR and DR compared to the ideal LC-based ΣΔ modulator.

Keywords: Continuous-time bandpass delta-sigma modulators, excess loop delay, on-chip inductor, Q-enhanced LC filter.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 705
122 Analog Front End Low Noise Amplifier in 0.18-µm CMOS for Ultrasound Imaging Applications

Authors: Haridas Kuruveettil, Dongning Zhao, Cheong Jia Hao, Minkyu Je

Abstract:

We present the design of Analog front end (AFE) low noise pre-amplifier implemented in a high voltage 0.18-µm CMOS technology for  a three dimensional ultrasound  bio microscope (3D UBM) application. The fabricated chip has 4X16 pre-amplifiers implemented to interface   a 2-D array of    high frequency capacitive micro-machined ultrasound transducers (CMUT). Core AFE cell consists of a high-voltage pulser in the transmit path, and a low-noise transimpedance amplifier in the receive path. Proposed system offers a high image resolution by the use of high frequency CMUTs with associated high performance imaging electronics integrated together.  Performance requirements and the design methods of the high bandwidth transimpedance amplifier are described in the paper. A single cell of transimpedance (TIA) amplifier and the bias circuit occupies a silicon area of 250X380 µm2 and the full chip occupies a total silicon area of 10x6.8 mm².

Keywords: Ultrasound, analog front end, medical imaging, beam forming, biomicroscope, transimpedance gain.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 8129
121 Low Jitter ADPLL based Clock Generator for High Speed SoC Applications

Authors: Moorthi S., Meganathan D., Janarthanan D., Praveen Kumar P., J. Raja paul perinbam

Abstract:

An efficient architecture for low jitter All Digital Phase Locked Loop (ADPLL) suitable for high speed SoC applications is presented in this paper. The ADPLL is designed using standard cells and described by Hardware Description Language (HDL). The ADPLL implemented in a 90 nm CMOS process can operate from 10 to 200 MHz and achieve worst case frequency acquisition in 14 reference clock cycles. The simulation result shows that PLL has cycle to cycle jitter of 164 ps and period jitter of 100 ps at 100MHz. Since the digitally controlled oscillator (DCO) can achieve both high resolution and wide frequency range, it can meet the demands of system-level integration. The proposed ADPLL can easily be ported to different processes in a short time. Thus, it can reduce the design time and design complexity of the ADPLL, making it very suitable for System-on-Chip (SoC) applications.

Keywords: All Digital Phase Locked Loop (ADPLL), Systemon-Chip (SoC), Phase Locked Loop (PLL), Very High speedIntegrated Circuit (VHSIC) Hardware Description Language(VHDL), Digitally Controlled Oscillator (DCO), Phase frequencydetector (PFD) and Voltage Controlled Oscillator (VCO).

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3018
120 Analytical Modelling of Surface Roughness during Compacted Graphite Iron Milling Using Ceramic Inserts

Authors: S. Karabulut, A. Güllü, A. Güldas, R. Gürbüz

Abstract:

This study investigates the effects of the lead angle and chip thickness variation on surface roughness during the machining of compacted graphite iron using ceramic cutting tools under dry cutting conditions. Analytical models were developed for predicting the surface roughness values of the specimens after the face milling process. Experimental data was collected and imported to the artificial neural network model. A multilayer perceptron model was used with the back propagation algorithm employing the input parameters of lead angle, cutting speed and feed rate in connection with chip thickness. Furthermore, analysis of variance was employed to determine the effects of the cutting parameters on surface roughness. Artificial neural network and regression analysis were used to predict surface roughness. The values thus predicted were compared with the collected experimental data, and the corresponding percentage error was computed. Analysis results revealed that the lead angle is the dominant factor affecting surface roughness. Experimental results indicated an improvement in the surface roughness value with decreasing lead angle value from 88° to 45°.

Keywords: CGI, milling, surface roughness, ANN, regression, modeling, analysis.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1923
119 Modeling of Electrokinetic Mixing in Lab on Chip Microfluidic Devices

Authors: Virendra J. Majarikar, Harikrishnan N. Unni

Abstract:

This paper sets to demonstrate a modeling of electrokinetic mixing employing electroosmotic stationary and time-dependent microchannel using alternate zeta patches on the lower surface of the micromixer in a lab on chip microfluidic device. Electroosmotic flow is amplified using different 2D and 3D model designs with alternate and geometric zeta potential values such as 25, 50, and 100 mV, respectively, to achieve high concentration mixing in the electrokinetically-driven microfluidic system. The enhancement of electrokinetic mixing is studied using Finite Element Modeling, and simulation workflow is accomplished with defined integral steps. It can be observed that the presence of alternate zeta patches can help inducing microvortex flows inside the channel, which in turn can improve mixing efficiency. Fluid flow and concentration fields are simulated by solving Navier-Stokes equation (implying Helmholtz-Smoluchowski slip velocity boundary condition) and Convection-Diffusion equation. The effect of the magnitude of zeta potential, the number of alternate zeta patches, etc. are analysed thoroughly. 2D simulation reveals that there is a cumulative increase in concentration mixing, whereas 3D simulation differs slightly with low zeta potential as that of the 2D model within the T-shaped micromixer for concentration 1 mol/m3 and 0 mol/m3, respectively. Moreover, 2D model results were compared with those of 3D to indicate the importance of the 3D model in a microfluidic design process.

Keywords: COMSOL, electrokinetic, electroosmotic, microfluidics, zeta potential.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1154
118 Rapid Determination of Biochemical Oxygen Demand

Authors: Mayur Milan Kale, Indu Mehrotra

Abstract:

Biochemical Oxygen Demand (BOD) is a measure of the oxygen used in bacteria mediated oxidation of organic substances in water and wastewater. Theoretically an infinite time is required for complete biochemical oxidation of organic matter, but the measurement is made over 5-days at 20 0C or 3-days at 27 0C test period with or without dilution. Researchers have worked to further reduce the time of measurement. The objective of this paper is to review advancement made in BOD measurement primarily to minimize the time and negate the measurement difficulties. Survey of literature review in four such techniques namely BOD-BARTTM, Biosensors, Ferricyanidemediated approach, luminous bacterial immobilized chip method. Basic principle, method of determination, data validation and their advantage and disadvantages have been incorporated of each of the methods. In the BOD-BARTTM method the time lag is calculated for the system to change from oxidative to reductive state. BIOSENSORS are the biological sensing element with a transducer which produces a signal proportional to the analyte concentration. Microbial species has its metabolic deficiencies. Co-immobilization of bacteria using sol-gel biosensor increases the range of substrate. In ferricyanidemediated approach, ferricyanide has been used as e-acceptor instead of oxygen. In Luminous bacterial cells-immobilized chip method, bacterial bioluminescence which is caused by lux genes was observed. Physiological responses is measured and correlated to BOD due to reduction or emission. There is a scope to further probe into the rapid estimation of BOD.

Keywords: BOD, Four methods, Rapid estimation

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3593
117 Precise Measurement of Displacement using Pixels

Authors: Razif Mahadi, John Billingsley

Abstract:

Manufacturing processes demand tight dimensional tolerances. The paper concerns a transducer for precise measurement of displacement, based on a camera containing a linescan chip. When tests were conducted using a track of black and white stripes with a 2mm pitch, errors in measuring on individual cycle amounted to 1.75%, suggesting that a precision of 35 microns is achievable.

Keywords: Linescan, microcontroller, pixels.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1280
116 Performance Analysis of a WiMax/Wi-Fi System Whilst Streaming a Video Conference Application

Authors: Patrice Obinna Umenne, Marcel O. Odhiambo

Abstract:

WiMAX and Wi-Fi are considered as the promising broadband access solutions for wireless MAN’s and LANs, respectively. In the recent works WiMAX is considered suitable as a backhaul service to connect multiple dispersed Wi-Fi ‘hotspots’. Hence a new integrated WiMAX/Wi-Fi architecture has been proposed in literatures. In this paper the performance of an integrated WiMAX/Wi-Fi network has been investigated by streaming a video conference application. The difference in performance between the two protocols is compared with respect to video conferencing. The Heterogeneous network was simulated in the OPNET simulator.

Keywords: Throughput, delay, delay variance, packet loss, Quality of Service (QoS).

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2615
115 Unsteady Flow Simulations for Microchannel Design and Its Fabrication for Nanoparticle Synthesis

Authors: Mrinalini Amritkar, Disha Patil, Swapna Kulkarni, Sukratu Barve, Suresh Gosavi

Abstract:

Micro-mixers play an important role in the lab-on-a-chip applications and micro total analysis systems to acquire the correct level of mixing for any given process. The mixing process can be classified as active or passive according to the use of external energy. Literature of microfluidics reports that most of the work is done on the models of steady laminar flow; however, the study of unsteady laminar flow is an active area of research at present. There are wide applications of this, out of which, we consider nanoparticle synthesis in micro-mixers. In this work, we have developed a model for unsteady flow to study the mixing performance of a passive micro mixer for reactants used for such synthesis. The model is developed in Finite Volume Method (FVM)-based software, OpenFOAM. The model is tested by carrying out the simulations at Re of 0.5. Mixing performance of the micro-mixer is investigated using simulated concentration values of mixed species across the width of the micro-mixer and calculating the variance across a line profile. Experimental validation is done by passing dyes through a Y shape micro-mixer fabricated using polydimethylsiloxane (PDMS) polymer and comparing variances with the simulated ones. Gold nanoparticles are later synthesized through the micro-mixer and collected at two different times leading to significantly different size distributions. These times match with the time scales over which reactant concentrations vary as obtained from simulations. Our simulations could thus be used to create design aids for passive micro-mixers used in nanoparticle synthesis.

Keywords: Lab-on-chip, micro-mixer, OpenFOAM, PDMS.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 741
114 FPGA Hardware Implementation and Evaluation of a Micro-Network Architecture for Multi-Core Systems

Authors: Yahia Salah, Med Lassaad Kaddachi, Rached Tourki

Abstract:

This paper presents the design, implementation and evaluation of a micro-network, or Network-on-Chip (NoC), based on a generic pipeline router architecture. The router is designed to efficiently support traffic generated by multimedia applications on embedded multi-core systems. It employs a simplest routing mechanism and implements the round-robin scheduling strategy to resolve output port contentions and minimize latency. A virtual channel flow control is applied to avoid the head-of-line blocking problem and enhance performance in the NoC. The hardware design of the router architecture has been implemented at the register transfer level; its functionality is evaluated in the case of the two dimensional Mesh/Torus topology, and performance results are derived from ModelSim simulator and Xilinx ISE 9.2i synthesis tool. An example of a multi-core image processing system utilizing the NoC structure has been implemented and validated to demonstrate the capability of the proposed micro-network architecture. To reduce complexity of the image compression and decompression architecture, the system use image processing algorithm based on classical discrete cosine transform with an efficient zonal processing approach. The experimental results have confirmed that both the proposed image compression scheme and NoC architecture can achieve a reasonable image quality with lower processing time.

Keywords: Generic Pipeline Network-on-Chip Router Architecture, JPEG Image Compression, FPGA Hardware Implementation, Performance Evaluation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3050
113 Overview of Adaptive Spline Interpolation

Authors: Rongli Gai, Zhiyuan Chang, Xiaohong Wang, Jingyu Liu

Abstract:

In view of various situations in the interpolation process, most researchers use self-adaptation to adjust the interpolation process, which is also one of the current and future research hotspots in the field of CNC (Computerized Numerical Control) machining. In the interpolation process, according to the overview of the spline curve interpolation algorithm, the adaptive analysis is carried out from the factors affecting the interpolation process. The adaptive operation is reflected in various aspects, such as speed, parameters, errors, nodes, feed rates, random period, sensitive point, step size, curvature, adaptive segmentation, adaptive optimization, etc. This paper will analyze and summarize the research of adaptive imputation in the direction of the above factors affecting imputation.

Keywords: Adaptive algorithm, CNC machining, interpolation constraints, spline curve interpolation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 478
112 Roughness and Hardness of 60/40 Cu-Zn Alloy

Authors: Pavana Manvikar, G K Purohit

Abstract:

The functional performance of machined components, often, depends on surface topography, hardness, nature of stress and strain induced on the surface, etc. Invariably, surfaces of metallic components obtained by turning, milling, etc., consist of irregularities such as machining marks are responsible for the above. Surface finishing/coating processes used to produce improved surface quality/textures are classified as chip-removal and chip-less processes. Burnishing is chip-less cold working process carried out to improve surface finish, hardness and resistance to fatigue and corrosion; not obtainable by other surface coating and surface treatment processes. It is a very simple, but effective method which improves surface characteristics and is reported to introduce compressive stresses.

Of late, considerable attention is paid to post-machining, finishing operations, such as burnishing. During burnishing the micro-irregularities start to deform plastically, initially the crests are gradually flattened and zones of reduced deformation are formed. When all the crests are deformed, the valleys between the micro-irregularities start moving in the direction of the newly formed surface. The grain structure is then condensed, producing a smoother and harder surface with superior load-carrying and wear-resistant capabilities.

Burnishing can be performed on a lathe with a highly polished ball or roller type tool which is traversed under force over a rotating/stationary work piece. Often, several passes are used to obtain the work piece surface with the desired finish and hardness.

This paper presents the findings of an experimental investigation on the effect of ball burnishing parameters such as, burnishing speed, feed, force and number of passes; on surface roughness (Ra) and micro-hardness (Hv) of a 60/40 copper/zinc alloy, using a 2-level fractional factorial design of experiments (DoE). Mathematical models were developed to predict surface roughness and hardness generated by burnishing in terms of the above process parameters. A ball-type tool, designed and constructed from a high chrome steel material (HRC=63 and Ra=0.012 µm), was used for burnishing of fine-turned cylindrical bars (0.68-0.78µm and 145Hv). They are given by,

 

Ra= 0.305-0.005X1 - 0.0175X2 + 0.0525X4 + 0.0125X1X4 -0.02X2X4 - 0.0375X3X4

 

Hv=160.625 -2.37 5X1 + 5.125X2 + 1.875X3 + 4.375X4 - 1.625X1X4 + 4.375X2X4 - 2.375X3X4

 

High surface microhardness (175HV) was obtained at 400rpm, 2passes, 0.05mm/rev and 15kgf., and high surface finish (0.20µm) was achieved at 30kgf, 0.1mm/rev, 112rpm and single pass. In other words, surface finish improved by 350% and microhardness improved by 21% compared to as machined conditions.

Keywords: Ball burnishing, surface roughness, micro-hardness.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2478
111 Engineering Photodynamic with Radioactive Therapeutic Systems for Sustainable Molecular Polarity: Autopoiesis Systems

Authors: Moustafa Osman Mohammed

Abstract:

This paper introduces Luhmann’s autopoietic social systems starting with the original concept of autopoiesis by biologists and scientists, including the modification of general systems based on socialized medicine. A specific type of autopoietic system is explained in the three existing groups of the ecological phenomena: interaction, social and medical sciences. This hypothesis model, nevertheless, has a nonlinear interaction with its natural environment ‘interactional cycle’ for the exchange of photon energy with molecular without any changes in topology. The external forces in the systems environment might be concomitant with the natural fluctuations’ influence (e.g. radioactive radiation, electromagnetic waves). The cantilever sensor deploys insights to the future chip processor for prevention of social metabolic systems. Thus, the circuits with resonant electric and optical properties are prototyped on board as an intra–chip inter–chip transmission for producing electromagnetic energy approximately ranges from 1.7 mA at 3.3 V to service the detection in locomotion with the least significant power losses. Nowadays, therapeutic systems are assimilated materials from embryonic stem cells to aggregate multiple functions of the vessels nature de-cellular structure for replenishment. While, the interior actuators deploy base-pair complementarity of nucleotides for the symmetric arrangement in particular bacterial nanonetworks of the sequence cycle creating double-stranded DNA strings. The DNA strands must be sequenced, assembled, and decoded in order to reconstruct the original source reliably. The design of exterior actuators have the ability in sensing different variations in the corresponding patterns regarding beat-to-beat heart rate variability (HRV) for spatial autocorrelation of molecular communication, which consists of human electromagnetic, piezoelectric, electrostatic and electrothermal energy to monitor and transfer the dynamic changes of all the cantilevers simultaneously in real-time workspace with high precision. A prototype-enabled dynamic energy sensor has been investigated in the laboratory for inclusion of nanoscale devices in the architecture with a fuzzy logic control for detection of thermal and electrostatic changes with optoelectronic devices to interpret uncertainty associated with signal interference. Ultimately, the controversial aspect of molecular frictional properties is adjusted to each other and forms its unique spatial structure modules for providing the environment mutual contribution in the investigation of mass temperature changes due to pathogenic archival architecture of clusters.

Keywords: Autopoiesis, quantum photonics, portable energy, photonic structure, photodynamic therapeutic system.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 801
110 An Improved Design of Area Efficient Two Bit Comparator

Authors: Shashank Gautam, Pramod Sharma

Abstract:

In present era, development of digital circuits, signal processors and other integrated circuits, magnitude comparators are challenged by large area and more power consumption. Comparator is most basic circuit that performs comparison. This paper presents a technique to design a two bit comparator which consumes less area and power. DSCH and MICROWIND version 3 are used to design the schematic and design the layout of the schematic, observe the performance parameters at different nanometer technologies respectively.

Keywords: Chip design, consumed power, layout area, two bit comparator.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1167
109 Modeling Stress-Induced Regulatory Cascades with Artificial Neural Networks

Authors: Maria E. Manioudaki, Panayiota Poirazi

Abstract:

Yeast cells live in a constantly changing environment that requires the continuous adaptation of their genomic program in order to sustain their homeostasis, survive and proliferate. Due to the advancement of high throughput technologies, there is currently a large amount of data such as gene expression, gene deletion and protein-protein interactions for S. Cerevisiae under various environmental conditions. Mining these datasets requires efficient computational methods capable of integrating different types of data, identifying inter-relations between different components and inferring functional groups or 'modules' that shape intracellular processes. This study uses computational methods to delineate some of the mechanisms used by yeast cells to respond to environmental changes. The GRAM algorithm is first used to integrate gene expression data and ChIP-chip data in order to find modules of coexpressed and co-regulated genes as well as the transcription factors (TFs) that regulate these modules. Since transcription factors are themselves transcriptionally regulated, a three-layer regulatory cascade consisting of the TF-regulators, the TFs and the regulated modules is subsequently considered. This three-layer cascade is then modeled quantitatively using artificial neural networks (ANNs) where the input layer corresponds to the expression of the up-stream transcription factors (TF-regulators) and the output layer corresponds to the expression of genes within each module. This work shows that (a) the expression of at least 33 genes over time and for different stress conditions is well predicted by the expression of the top layer transcription factors, including cases in which the effect of up-stream regulators is shifted in time and (b) identifies at least 6 novel regulatory interactions that were not previously associated with stress-induced changes in gene expression. These findings suggest that the combination of gene expression and protein-DNA interaction data with artificial neural networks can successfully model biological pathways and capture quantitative dependencies between distant regulators and downstream genes.

Keywords: gene modules, artificial neural networks, yeast, stress

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1414
108 A Programmable FSK-Modulator in 350nm CMOS Technology

Authors: Nasir Mehmood, Saad Rahman, Vinodh Ravinath, Mahesh Balaji

Abstract:

This paper describes the design of a programmable FSK-modulator based on VCO and its implementation in 0.35m CMOS process. The circuit is used to transmit digital data at 100Kbps rate in the frequency range of 400-600MHz. The design and operation of the modulator is discussed briefly. Further the characteristics of PLL, frequency synthesizer, VCO and the whole design are elaborated. The variation among the proposed and tested specifications is presented. Finally, the layout of sub-modules, pin configurations, final chip and test results are presented.

Keywords: FSK Modulator, CMOS, VCO, Phase Locked Loop, Frequency Synthesizer.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1675
107 Formation of Round Channel for Microfluidic Applications

Authors: A. Zahra, G. de Cesare, D. Caputo, A. Nascetti

Abstract:

PDMS (Polydimethylsiloxane) polymer is a suitable material for biological and MEMS (Microelectromechanical systems) designers, because of its biocompatibility, transparency and high resistance under plasma treatment. PDMS round channel is always been of great interest due to its ability to confine the liquid with membrane type micro valves. In this paper we are presenting a very simple way to form round shapemicrofluidic channel, which is based on reflow of positive photoresist AZ® 40 XT. With this method, it is possible to obtain channel of different height simply by varying the spin coating parameters of photoresist.

Keywords: Lab-on-Chip, PDMS, Reflow, Round microfluidic channel.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2957
106 A Study on RFID Privacy Mechanism using Mobile Phone

Authors: Haedong Lee, Dooho Choi, Sokjoon Lee, Howon Kim

Abstract:

This paper is about hiding RFID tag identifier (ID) using handheld device like a cellular phone. By modifying the tag ID of objects periodically or manually using cellular phone built-in a RFID reader chip or with a external RFID reader device, we can prevent other people from gathering the information related with objects querying information server (like an EPC IS) with a tag ID or deriving the information from tag ID-s code structure or tracking the location of the objects and the owner of the objects. In this paper, we use a cryptographic algorithm for modification and restoring of RFID tag ID, and for one original tag ID, there are several different temporary tag ID, periodically.

Keywords: EPC, RFID, Mobile RFID.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1763
105 0.13-μm CMOS Vector Modulator for Wireless Backhaul System

Authors: J. S. Kim, N. P. Hong

Abstract:

In this paper, a CMOS vector modulator designed for wireless backhaul system based on 802.11ac is presented. A poly phase filter and sign select switches yield two orthogonal signal paths. Two variable gain amplifiers with strongly reduced phase shift of only ±5 ° are used to weight these paths. It has a phase control range of 360 ° and a gain range of -10 dB to 10 dB. The current drawn from a 1.2 V supply amounts 20.4 mA. Using a 0.13 mm technology, the chip die area amounts 1.47x0.75 mm².

Keywords: CMOS, vector modulator, backhaul, 802.11ac.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2217
104 0.13-µm Complementary Metal-Oxide Semiconductor Vector Modulator for Beamforming System

Authors: J. S. Kim

Abstract:

This paper presents a 0.13-µm Complementary Metal-Oxide Semiconductor (CMOS) vector modulator for beamforming system. The vector modulator features a 360° phase and gain range of -10 dB to 10 dB with a root mean square phase and amplitude error of only 2.2° and 0.45 dB, respectively. These features make it a suitable for wireless backhaul system in the 5 GHz industrial, scientific, and medical (ISM) bands. It draws a current of 20.4 mA from a 1.2 V supply. The total chip size is 1.87x1.34 mm².

Keywords: CMOS, vector modulator, beamforming, wireless backhaul, ISM.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1010
103 Li-Fi Technology: Data Transmission through Visible Light

Authors: Shahzad Hassan, Kamran Saeed

Abstract:

People are always in search of Wi-Fi hotspots because Internet is a major demand nowadays. But like all other technologies, there is still room for improvement in the Wi-Fi technology with regards to the speed and quality of connectivity. In order to address these aspects, Harald Haas, a professor at the University of Edinburgh, proposed what we know as the Li-Fi (Light Fidelity). Li-Fi is a new technology in the field of wireless communication to provide connectivity within a network environment. It is a two-way mode of wireless communication using light. Basically, the data is transmitted through Light Emitting Diodes which can vary the intensity of light very fast, even faster than the blink of an eye. From the research and experiments conducted so far, it can be said that Li-Fi can increase the speed and reliability of the transfer of data. This paper pays particular attention on the assessment of the performance of this technology. In other words, it is a 5G technology which uses LED as the medium of data transfer. For coverage within the buildings, Wi-Fi is good but Li-Fi can be considered favorable in situations where large amounts of data are to be transferred in areas with electromagnetic interferences. It brings a lot of data related qualities such as efficiency, security as well as large throughputs to the table of wireless communication. All in all, it can be said that Li-Fi is going to be a future phenomenon where the presence of light will mean access to the Internet as well as speedy data transfer.

Keywords: Communication, LED, Li-Fi, Wi-Fi.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2097
102 A Multi Cordic Architecture on FPGA Platform

Authors: Ahmed Madian, Muaz Aljarhi

Abstract:

Coordinate Rotation Digital Computer (CORDIC) is a unique digital computing unit intended for the computation of mathematical operations and functions. This paper presents A multi CORDIC processor that integrates different CORDIC architectures on a single FPGA chip and allows the user to select the CORDIC architecture to proceed with based on what he wants to calculate and his needs. Synthesis show that radix 2 CORDIC has the lowest clock delay, radix 8 CORDIC has the highest LUT usage and lowest register usage while Hybrid Radix 4 CORDIC had the highest clock delay.

Keywords: Multi, CORDIC, FPGA, Processor.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2651
101 A SAW-less Dual-Band CDMA Diversity and Simultaneous-GPS Zero-IF Receiver

Authors: Bassem Fahs, Philippe Barré, Patrick Ozenne, Eric Chartier, Guillaume Hérault, Sébastien Jacquet, Sébastien Clamagirand

Abstract:

We present a dual-band (Cellular & PCS) dual-path zero-IF receiver for CDMA2000 diversity, monitoring and simultaneous-GPS. The secondary path is a SAW-less diversity CDMA receiver which can be also used for advanced features like monitoring when supported with an additional external VCO. A GPS receiver is integrated with its dedicated VCO allowing simultaneous positioning during a cellular call. The circuit is implemented in a 0.25μm 40GHz-fT BiCMOS process and uses a HVQFN 56-pin package. It consumes a maximum 300mW from a 2.8V supply in dual-modes. The chip area is 12.8mm2.

Keywords: CDMA, diversity, GPS, zero-IF, SAW-less

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1775
100 Real-Time Detecting Concentration of Mycobacterium Tuberculosis by CNTFET Biosensor

Authors: Hsiao-Wei Wang, Jung-Tang Huang, Chun-Chiang Lin

Abstract:

Aptamers are useful tools in microorganism researches, diagnoses, and treatment. Aptamers are specific target molecules formed by oligonucleic acid molecules, and are not decomposed by alcohol. Aptamers used to detect Mycobacterium tuberculosis (MTB) have been proved to have specific affinity to the outer membrane proteins of MTB. This article presents a biosensor chip set with aptamers for early detection of MTB with high specificity and sensitivity, even in very low concentration. Meanwhile, we have already made a modified hydrophobic facial mask module with internal rendering hydrophobic for effectively collecting M. tuberculosis.

Keywords: Aptamers, CNTFET, Mycobacterium tuberculosis, early detection.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1955
99 Active Packaging Influence on the Shelf Life of Milk Pomade Sweet – Sherbet

Authors: Eva Ungure, Sandra Muizniece-Brasava, Lija Dukalska, Vita Levkane

Abstract:

The objective of the research was to evaluate the quality of milk pomade sweet – sherbet packed in different packaging materials (Multibarrier 60, met.BOPET/PE, Aluthen), by several packaging technologies – active and modified atmosphere (MAP) (consisting of 100% CO2), and control – in air ambiance. Experiments were carried out at the Faculty of Food Technology of Latvia University of Agriculture. Samples were stored at the room temperature +21±1 °C. The physiochemical properties – weight losses, moisture, hardening, colour and changes in headspace atmosphere concentration (CO2 and O2) of packs were analysed before packaging and after 2, 4, 6, 8, 10 and 12 storage weeks.

Keywords: packaging, shelf life, sherbet with crunchy peanut chip's

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2151
98 Design of Low-Area HEVC Core Transform Architecture

Authors: Seung-Mok Han, Woo-Jin Nam, Seongsoo Lee

Abstract:

This paper proposes and implements an core transform architecture, which is one of the major processes in HEVC video compression standard. The proposed core transform architecture is implemented with only adders and shifters instead of area-consuming multipliers. Shifters in the proposed core transform architecture are implemented in wires and multiplexers, which significantly reduces chip area. Also, it can process from 4×4 to 16×16 blocks with common hardware by reusing processing elements. Designed core transform architecture in 0.13um technology can process a 16×16 block with 2-D transform in 130 cycles, and its gate count is 101,015 gates.

Keywords: HEVC, Core transform, Low area, Shift-and-add, PE reuse

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1876
97 A High-Crosstalk Silicon Photonic Arrayed Waveguide Grating

Authors: Qing Fang, Lianxi Jia, Junfeng Song, Chao Li, Xianshu Luo, Mingbin Yu, Guoqiang Lo

Abstract:

In this paper, we demonstrated a 1 × 4 silicon photonic cascaded arrayed waveguide grating, which is fabricated on a SOI wafer with a 220 nm top Si layer and a 2µm buried oxide layer. The measured on-chip transmission loss of this cascaded arrayed waveguide grating is ~ 5.6 dB, including the fiber-to-waveguide coupling loss. The adjacent crosstalk is 33.2 dB. Compared to the normal single silicon photonic arrayed waveguide grating with a crosstalk of ~ 12.5 dB, the crosstalk of this device has been dramatically increased.

Keywords: Silicon photonic, arrayed waveguide grating, high-crosstalk, cascaded structure.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1760