Search results for: Plasma actuator
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 372

Search results for: Plasma actuator

342 Low Power Consuming Electromagnetic Actuators for Pulsed Pilot Stages

Authors: M. Honarpardaz, Z. Zhang, J. Derkx, A. Trangärd, J. Larsson

Abstract:

Pilot stages are one of the most common positioners and regulators in industry. In this paper, we present two novel concepts for pilot stages with low power consumption to regulate a pneumatic device. Pilot 1, first concept, is designed based on a conventional frame core electro-magnetic actuator and a leaf spring to control the air flow and pilot 2 has an axisymmetric actuator and spring made of non-oriented electrical steel. Concepts are simulated in a system modeling tool to study their dynamic behavior. Both concepts are prototyped and tested. Experimental results are comprehensively analyzed and compared. The most promising concept that consumes less than 8 mW is highlighted and presented.

Keywords: Electro-magnetic actuator, multidisciplinary system, low power consumption, pilot stage.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 922
341 Bond Graph Modeling of Inter-Actuator Interactions in a Multi-Cylinder Hydraulic System

Authors: Mutuku Muvengei, John Kihiu

Abstract:

In this paper, a bond graph dynamic model for a valvecontrolled hydraulic cylinder has been developed. A simplified bond graph model of the inter-actuator interactions in a multi-cylinder hydraulic system has also been presented. The overall bond graph model of a valve-controlled hydraulic cylinder was developed by combining the bond graph sub-models of the pump, spool valve and the actuator using junction structures. Causality was then assigned in order to obtain a computational model which could be simulated. The causal bond graph model of the hydraulic cylinder was verified by comparing the open loop state responses to those of an ODE model which had been developed in literature based on the same assumptions. The results were found to correlate very well both in the shape of the curves, magnitude and the response times, thus indicating that the developed model represents the hydraulic dynamics of a valve-controlled cylinder. A simplified model for interactuator interaction was presented by connecting an effort source with constant pump pressure to the zero-junction from which the cylinders in a multi-cylinder system are supplied with a constant pressure from the pump. On simulating the state responses of the developed model under different situations of cylinder operations, indicated that such a simple model can be used to predict the inter-actuator interactions.

Keywords: Bond graphs, Inter-actuator interactions, Valvecontrolledhydraulic cylinder.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2995
340 Feasibility of Leukemia Cancer Treatment (K562) by Atmospheric Pressure Plasma Jet

Authors: Mashayekh Amir Shahriar, Akhlaghi Morteza, Rajaee Hajar, Khani Mohammad Reza, Shokri Babak

Abstract:

A new and novel approach in medicine is the use of cold plasma for various applications such as sterilization blood coagulation and cancer cell treatment. In this paper a pin-to-hole plasma jet suitable for biological applications is investigated and characterized and the possibility and feasibility of cancer cell treatment is evaluated. The characterization includes power consumption via Lissajous method, thermal behavior of plasma using Infra-red camera as a novel method, Optical Emission Spectroscopy (OES) to determine the species that are generated. Treatment of leukemia cancer cells is also implemented and MTT assay is used to evaluate viability.

Keywords: Atmospheric Pressure Plasma Jet (APPJ), Plasma Medicine, Cancer cell treatment, leukemia.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2191
339 Effect of Pre-Plasma Potential on Laser Ion Acceleration

Authors: Djemai Bara, Mohamed Faouzi Mahboub, Djamila Bennaceur-Doumaz

Abstract:

In this work, the role of the preformed plasma created on the front face of a target, irradiated by a high intensity short pulse laser, in the framework of ion acceleration process, modeled by Target Normal Sheath Acceleration (TNSA) mechanism, is studied. This plasma is composed of cold ions governed by fluid equations and non-thermal & trapped with densities represented by a "Cairns-Gurevich" equation. The self-similar solution of the equations shows that electronic trapping and the presence of non-thermal electrons in the pre-plasma are both responsible in ion acceleration as long as the proportion of energetic electrons is not too high. In the case where the majority of electrons are energetic, the electrons are accelerated directly by the ponderomotive force of the laser without the intermediate of an accelerating plasma wave.

Keywords: Cairns-Gurevich Equation, ion acceleration, plasma expansion, pre-plasma.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 655
338 Propagation of Nonlinear Surface Waves in Relativistically Degenerate Quantum Plasma Half-Space

Authors: Swarniv Chandra, Parthasona Maji, Basudev Ghosh

Abstract:

The nonlinear self-interaction of an electrostatic surface wave on a semibounded quantum plasma with relativistic degeneracy is investigated by using quantum hydrodynamic (QHD) model and the Poisson’s equation with appropriate boundary conditions. It is shown that a part of the second harmonic generated through self-interaction does not have a true surface wave character but propagates obliquely away from the plasma-vacuum interface into the bulk of plasma.

Keywords: Harmonic Generation, Quantum Plasma, Quantum Hydrodynamic Model, Relativistic Degeneracy, Surface waves.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2223
337 PIV Investigation into the Evolution of Vortical Structures in the Zero Pressure Gradient Boundary Layer

Authors: Ishtiaq A. Chaudhry, Zia R. Tahir

Abstract:

Experimental investigation has been carried out towards understanding the complex fluid dynamics involved in the interaction of vortical structures with zero pressure gradient boundary layer. A laminar boundary layer is produced on the flat plate placed in the water flume and the synthetic jet actuator is deployed on top of the plate at a definite distance from the leading edge. The synthetic jet actuator has been designed in such a way that the to and fro motion of the diaphragm is maneuvered at will by varying the operating parameters to produce the typical streamwise vortical structures namely hairpin and tilted vortices. PIV measurements are made on the streamwise plane normal to the plate to evaluate their interaction with the near wall fluid.

Keywords: Boundary layer, synthetic jet actuator, flow separation control, vortical structures.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1581
336 Aerodynamic Stall Control of a Generic Airfoil using Synthetic Jet Actuator

Authors: Basharat Ali Haider, Naveed Durrani, Nadeem Aizud, Salimuddin Zahir

Abstract:

The aerodynamic stall control of a baseline 13-percent thick NASA GA(W)-2 airfoil using a synthetic jet actuator (SJA) is presented in this paper. Unsteady Reynolds-averaged Navier-Stokes equations are solved on a hybrid grid using a commercial software to simulate the effects of a synthetic jet actuator located at 13% of the chord from the leading edge at a Reynolds number Re = 2.1x106 and incidence angles from 16 to 22 degrees. The experimental data for the pressure distribution at Re = 3x106 and aerodynamic coefficients at Re = 2.1x106 (angle of attack varied from -16 to 22 degrees) without SJA is compared with the computational fluid dynamic (CFD) simulation as a baseline validation. A good agreement of the CFD simulations is obtained for aerodynamic coefficients and pressure distribution. A working SJA has been integrated with the baseline airfoil and initial focus is on the aerodynamic stall control at angles of attack from 16 to 22 degrees. The results show a noticeable improvement in the aerodynamic performance with increase in lift and decrease in drag at these post stall regimes.

Keywords: Active flow control, Aerodynamic stall, Airfoilperformance, Synthetic jet actuator.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2269
335 Fast Prototyping for Atmospheric Plasma Sources Integration into Air Hand Dryers

Authors: Abdel Majid Kassir, Joël Sonnard, Ludovic Roulin, Martine Baudin, Gilles Courret, Wolfram Manuel Brück

Abstract:

Motivated by the current COVID-19 pandemic and the need to find alternative methods to contain and battle it, the purpose of this innovative project is to conceive a disinfection module equipped with a cold atmospheric plasma source. Such a plasma source was developed for a potential integration into pulsed air hand dryers. This type of plasma is known for its ability to generate reactive oxygen and nitrogen species that initiate bio-molecular reactions involved in bacterial and viral deactivation mechanisms. This study shows how additive manufacturing helped accelerate the prototyping of a nozzle allowing the preservation of the plasma flow from circulation cells and external interferences in the discharge’s surrounding.

Keywords: Cold atmospheric plasma, hand disinfection, hand sanitization, bacterial and viral deactivation, plasma chemistry.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 368
334 Plasma Properties Effect on Fluorescent Tube Plasma Antenna Performance

Authors: A. N. Dagang, E. I. Ismail, Z. Zakaria

Abstract:

This paper presents the analysis on the performance of monopole antenna with fluorescent tubes. In this research, the simulation and experimental approach is conducted. The fluorescent tube with different length and size is designed using Computer Simulation Technology (CST) software and the characteristics of antenna parameter are simulated throughout the software. CST was used to simulate antenna parameters such as return loss, resonant frequency, gain and directivity. Vector Network Analyzer (VNA) was used to measure the return loss of plasma antenna in order to validate the simulation results. In the simulation and experiment, the supply frequency is set starting from 1 GHz to 10 GHz. The results show that the return loss of plasma antenna changes when size of fluorescent tubes is varied, correspond to the different plasma properties. It shows that different values of plasma properties such as plasma frequency and collision frequency gives difference result of return loss, gain and directivity. For the gain, the values range from 2.14 dB to 2.36 dB. The return loss of plasma antenna offers higher value range from -22.187 dB to -32.903 dB. The higher the values of plasma frequency and collision frequency, the higher return loss can be obtained. The values obtained are comparative to the conventional type of metal antenna.

Keywords: Plasma antenna, fluorescent tube, computer simulation technology, plasma parameters.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1619
333 Plasma Density Distribution in Asymmetric Geometry Capacitive Coupled Plasma Discharge System

Authors: Yinchang Du, Yangfang Li

Abstract:

In this work, we used the single Langmuir probe to measure the plasma density distribution in an geometrically asymmetric capacitive coupled plasma discharge system. Because of the frame structure of powered electrode, the plasma density was not homogeneous in the discharge volume. It was higher under the frame, but lower in the centre. Finite element simulation results showed a good agreement with the experiment results. To increase the electron density in the central volume and improve the homogeneity of the plasma, we added an auxiliary electrode, powered by DC voltage, in the simulation geometry. The simulation results showed that the auxiliary electrode could alter the potential distribution and improve the density homogeneity effectively.

Keywords: Capacitive coupled discharge, asymmetric discharge, homogeneous plasma.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2826
332 Simulation of Dynamics of a Permanent Magnet Linear Actuator

Authors: Ivan Yatchev, Ewen Ritchie

Abstract:

Comparison of two approaches for the simulation of the dynamic behaviour of a permanent magnet linear actuator is presented. These are full coupled model, where the electromagnetic field, electric circuit and mechanical motion problems are solved simultaneously, and decoupled model, where first a set of static magnetic filed analysis is carried out and then the electric circuit and mechanical motion equations are solved employing bi-cubic spline approximations of the field analysis results. The results show that the proposed decoupled model is of satisfactory accuracy and gives more flexibility when the actuator response is required to be estimated for different external conditions, e.g. external circuit parameters or mechanical loads.

Keywords: Coupled problems, dynamic models, finite elementanalysis, linear actuators, permanent magnets.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2716
331 Effect of Nitrogen Gaseous Plasma on Cotton Fabric Dyed with Reactive Yellow105

Authors: Mohammad Mirjalili, Hamid Akbarpour

Abstract:

In this work, a bleached well cotton sample was dyed with reactive yellow105 dye and subsequently, the dyed sample was exposed to the plasma condition containing Nitrogen gas at 1 and 5 minutes of plasma exposure time, respectively. The effect of plasma on surface morphology fabric was studied by Scanning Electronic Microscope (SEM). CIELab, K/S, and %R of samples (treated and untreated samples) were measured by a reflective spectrophotometer, and consequently, the experiments show that the sample dyed with Reactive yellow 105 after being washed, with the increase in the operation time of plasma, its dye fastness decreases. In addition, the increase in plasma operation time at constant pressure would increase the destructing effect on the surface morphology of samples dyed with reactive yellow105.

Keywords: Cotton fabric, cold nitrogen plasma, reflective spectrophotometer, electronic scanning microscope (SEM), reactive yellow105 dye.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 840
330 Design and Performance Analysis of a Supersonic Diffuser for Plasma Wing Tunnel

Authors: R.S Pugazenthi, Andy C. McIntosh

Abstract:

Plasma Wind Tunnels (PWT) are extensively used for screening and qualification of re-entry Thermel Protection System (TPS) materials. Proper design of a supersonic diffuser for plasma wind tunnel is of importance for achieving good pressurerecovery (thereby reducing vacuum pumping requirement & run time costs) and isolating downstream stream fluctuations from propagating costs) and isolating downstream stream fluctuationnts the details of a rapid design methodology successfully employed for designing supersonic diffuser for high power (several megawatts)plasma wind tunnels and numerical performance analysis of a diffuser configuration designed for one megawatt power rated plasma wind tunnel(enthalpy ~ 30 MJ/kg) using FLUENT 6.3® solver for different diffuser operating sub-atmospheric back-pressures.

Keywords: Compressible flow, plasma wind tunnel, re-entry, supersonic diffuser

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3836
329 A Review of Methanol Production from Methane Oxidation via Non-Thermal Plasma Reactor

Authors: M. Khoshtinat, N. A. S. Amin, I. Noshadi

Abstract:

Direct conversion of methane to methanol by partial oxidation in a thermal reactor has a poor yield of about 2% which is less than the expected economical yield of about 10%. Conventional thermal catalytic reactors have been proposed to be superseded by plasma reactors as a promising approach, due to strength of the electrical energy which can break C-H bonds of methane. Among the plasma techniques, non-thermal dielectric barrier discharge (DBD) plasma chemical process is one of the most future promising technologies in synthesizing methanol. The purpose of this paper is presenting a brief review of CH4 oxidation with O2 in DBD plasma reactors based on the recent investigations. For this reason, the effect of various parameters of reactor configuration, feed ratio, applied voltage, residence time (gas flow rate), type of applied catalyst, pressure and reactor wall temperature on methane conversion and methanol selectivity are discussed.

Keywords: Dielectric barrier discharge, methane, methanol, partial oxidation, Plasma.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2881
328 Study of Current Sheath Velocities in Tridimensional with Sahand Plasma Focus

Authors: M.A. Mohammadi, H.Alinejad, A.Piri

Abstract:

The current sheath dynamics in plasma focus facilities is the most important factors. In this paper the current sheath velocity at three dimensional with Sahand plasma focus facility is investigated. For this purpose the discharge is produced in argon gas with deposited energy lying in the range of 20-37kJ. The current sheath is monitored using two tridimensional magnetic probes. These probes installed near the surface of the interior electrode (anode) at 125mm from the anode axis (pinch place). The effect of gas pressure on the current sheath velocity also is investigated.

Keywords: Plasma focus, Current sheath, magnetic probe

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1505
327 Learning Materials of Atmospheric Pressure Plasma Process: Turning Hydrophilic Surface to Hydrophobic

Authors: C.W. Kan

Abstract:

This paper investigates the use of atmospheric pressure plasma for improving the surface hydrophobicity of polyurethane synthetic leather with tetramethylsilane (TMS). The atmospheric pressure plasma treatment with TMS is a single-step process to enhance the hydrophobicity of polyurethane synthetic leather. The hydrophobicity of the treated surface was examined by contact angle measurement. The physical and chemical surface changes were evaluated by scanning electron microscopy (SEM) and infrared spectroscopy (FTIR). The purpose of this paper is to provide learning materials for understanding how to use atmospheric pressure plasma in the textile finishing process to transform a hydrophilic surface to hydrophobic.

Keywords: Learning materials, atmospheric pressure plasma treatment, hydrophobic, hydrophilic, surface.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1741
326 Fabless Prototyping Methodology for the Development of SOI based MEMS Microgripper

Authors: H. M. Usman Sani, Shafaat A. Bazaz, Nisar Ahmed

Abstract:

In this paper, Fabless Prototyping Methodology is introduced for the design and analysis of MEMS devices. Conventionally Finite Element Analysis (FEA) is performed before system level simulation. In our proposed methodology, system level simulation is performed earlier than FEA as it is computationally less extensive and low cost. System level simulations are based on equivalent behavioral models of MEMS device. Electrostatic actuation based MEMS Microgripper is chosen as case study to implement this methodology. This paper addresses the behavioral model development and simulation of actuator part of an electrostatically actuated Microgripper. Simulation results show that the actuator part of Microgripper works efficiently for a voltage range of 0-45V with the corresponding jaw displacement of 0-4.5425μm. With some minor changes in design, this range can be enhanced to 15μm at 85V.

Keywords: MEMS Actuator, Behavioral Model, CoventorWare, Microgripper, SOIMUMPs, System Level Simulation

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2236
325 Microwave Shielding of Magnetized Hydrogen Plasma in Carbon Nanotubes

Authors: Afshin Moradi, Mohammad Hosain Teimourpour

Abstract:

We derive simple sets of equations to describe the microwave response of a thin film of magnetized hydrogen plasma in the presence of carbon nanotubes, which were grown by ironcatalyzed high-pressure disproportionation (HiPco). By considering the interference effects due to multiple reflections between thin plasma film interfaces, we present the effects of the continuously changing external magnetic field and plasma parameters on the reflected power, absorbed power, and transmitted power in the system. The simulation results show that the interference effects play an important role in the reflectance, transmittance and absorptance of microwave radiation at the magnetized plasma slab. As a consequence, the interference effects lead to a sinusoidal variation of the reflected intensity and can greatly reduce the amount of reflection power, but the absorption power increases.

Keywords:

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1360
324 Modeling and Control of an Acrobot Using MATLAB and Simulink

Authors: Dong Sang Yoo

Abstract:

The problem of finding control laws for underactuated systems has attracted growing attention since these systems are characterized by the fact that they have fewer actuators than the degrees of freedom to be controlled. The acrobot, which is a planar two-link robotic arm in the vertical plane with an actuator at the elbow but no actuator at the shoulder, is a representative in underactuated systems. In this paper, the dynamic model of the acrobot is implemented using Mathworks’ Simscape. And the sliding mode control is constructed using MATLAB and Simulink.

Keywords: Acrobot, MATLAB and Simulink, sliding mode control, underactuated systems.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4195
323 High-Production Laser and Plasma Welding Technologies for High-Speed Vessels Production

Authors: V. M. Levshakov, N. A. Steshenkova, N. A. Nosyrev

Abstract:

Application of hulls processing technologies, based on high-concentrated energy sources (laser and plasma technologies), allow improve shipbuilding production. It is typical for high-speed vessels construction using steel and aluminum alloys with high precision hulls required. Report describes high-performance technologies for plasma welding (using direct current of reversed polarity), laser, and hybrid laser-arc welding of hulls structures developed by JSC “SSTC”

Keywords: Flat sections, hybrid laser-arc welding, plasma welding, plasmatron.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2556
322 Performance Enhancement of Analog Voltage Inverter with Adaptive Gain Control for Capacitive Load

Authors: Sun-Ki Hong, Yong-Ho Cho, Ki-Seok Kim, Tae-Sam Kang

Abstract:

Piezoelectric actuator is treated as RC load when it is modeled electrically. For some piezoelectric actuator applications, arbitrary voltage is required to actuate. Especially for unidirectional arbitrary voltage driving like as sine wave, some special inverter with circuit that can charge and discharge the capacitive energy can be used. In this case, the difference between power supply level and the object voltage level for RC load is varied. Because the control gain is constant, the controlled output is not uniform according to the voltage difference. In this paper, for charge and discharge circuit for unidirectional arbitrary voltage driving for piezoelectric actuator, the controller gain is controlled according to the voltage difference. With the proposed simple idea, the load voltage can have controlled smoothly although the voltage difference is varied. The appropriateness is proved from the simulation of the proposed circuit.

Keywords: Analog voltage inverter, Capacitive load, Gain control, DC-DC converter, Piezoelectric, Voltage waveform.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1705
321 BTEX (Benzene, Toluene, Ethylbenzene and Xylene) Degradation by Cold Plasma

Authors: Anelise Leal Vieira Cubas, Marina de Medeiros Machado, Marília de Medeiros Machado

Abstract:

The volatile organic compounds - BTEX (Benzene, Toluene, Ethylbenzene, and Xylene) petroleum derivatives, have high rates of toxicity, which may carry consequences for human health, biota and environment. In this directon, this paper proposes a method of treatment of these compounds by using corona discharge plasma technology. The efficiency of the method was tested by analyzing samples of BTEX after going through a plasma reactor by gas chromatography method. The results show that the optimal residence time of the sample in the reactor was 8 minutes.

Keywords: BTEX, Degradation, Cold plasma.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2692
320 A New Proportional - Pursuit Coupled Guidance Law with Actuator Delay Compensation

Authors: Chien-Chun Kung, Feng-Lung Chiang, Kuei-Yi Chen, Hsien-Wen Wei, Ming-Yi Huang, Cai-Ming Huang, Sheng-Kai Wang

Abstract:

The aim of this paper is to present a new three-dimensional proportional-pursuit coupled (PP) guidance law to track highly maneuverable aircraft. Utilizing a 3-D polar coordinate frame, the PP guidance law is formed by collecting proportional navigation guidance in Z-R plane and pursuit guidance in X-Y plane. Feedback linearization control method to solve the guidance accelerations is used to implement PP guidance. In order to compensate the actuator time delay, the time delay compensated version of PP guidance law (CPP) was derived and proved the effectiveness of modifying the problem of high acceleration in the final phase of pursuit guidance and improving the weak robustness of proportional navigation. The simulation results for intercepting Max G turn situation show that the proposed proportional-pursuit coupled guidance law guidance law with actuator delay compensation (CPP) possesses satisfactory robustness and performance.

Keywords: Feedback linearization control, time delay, guidance law, robustness, proportional navigation guidance, pursuit guidance.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2815
319 Direct Measurement of Electromagnetic Thrust of Electrodeless Helicon Plasma Thruster Using Magnetic Nozzle

Authors: Takahiro Nakamura, Kenji Takahashi, Hiroyuki Nishida, Shunjiro Shinohara, Takeshi Matsuoka, Ikkoh Funaki, Takao Tanikawa, Tohru Hada

Abstract:

In order to realize long-lived electric propulsion systems, we have been investigating an electrodeless plasma thruster. In our concept, a helicon plasma is accelerated by the magnetic nozzle for the thrusts production. In addition, the electromagnetic thrust can be enhanced by the additional radio-frequency rotating electric field (REF) power in the magnetic nozzle. In this study, a direct measurement of the electromagnetic thrust and a probe measurement have been conducted using a laboratory model of the thruster under the condition without the REF power input. Fromthrust measurement, it is shown that the thruster produces a sub-milli-newton order electromagnetic thrust force without the additional REF power. The thrust force and the density jump are observed due to the discharge mode transition from the inductive coupled plasma to the helicon wave excited plasma. The thermal thrust is theoretically estimated, and the total thrust force, which is a sum of the electromagnetic and the thermal thrust force and specific impulse are calculated to be up to 650 μN (plasma production power of 400 W, Ar gas mass flow rate of 1.0 mg/s) and 210 s (plasma production power of 400 W, Ar gas mass flow rate of 0.2 mg/s), respectively.

Keywords: Electric propulsion, Helicon plasma, Lissajous acceleration, Thrust stand.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2110
318 Nonplanar Ion-acoustic Waves in a Relativistically Degenerate Quantum Plasma

Authors: Swarniv Chandra, Sibarjun Das, Agniv Chandra, Basudev Ghosh, Apratim Jash

Abstract:

Using the quantum hydrodynamic (QHD) model the nonlinear properties of ion-acoustic waves in are lativistically degenerate quantum plasma is investigated by deriving a nonlinear Spherical Kadomtsev–Petviashvili (SKP) equation using the standard reductive perturbation method equation. It was found that the electron degeneracy parameter significantly affects the linear and nonlinear properties of ion-acoustic waves in quantum plasma.

Keywords: Kadomtsev-Petviashvili equation, Ion-acoustic Waves, Relativistic Degeneracy, Quantum Plasma, Quantum Hydrodynamic Model.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1690
317 Automotive ECU Design with Functional Safety for Electro-Mechanical Actuator Systems

Authors: Kyung-Jung Lee, Young-Hun Ki, Hyun-Sik Ahn

Abstract:

In this paper, we propose a hardware and software design method for automotive Electronic Control Units (ECU) considering the functional safety. The proposed ECU is considered for the application to Electro-Mechanical Actuator systems and the validity of the design method is shown by the application to the Electro-Mechanical Brake (EMB) control system which is used as a brake actuator in Brake-By-Wire (BBW) systems. The importance of a functional safety-based design approach to EMB ECU design has been emphasized because of its safety-critical functions, which are executed with the aid of many electric actuators, sensors, and application software. Based on hazard analysis and risk assessment according to ISO26262, the EMB system should be ASIL-D-compliant, the highest ASIL level. To this end, an external signature watchdog and an Infineon 32-bit microcontroller TriCore are used to reduce risks considering common-cause hardware failure. Moreover, a software design method is introduced for implementing functional safety-oriented monitoring functions based on an asymmetric dual core architecture considering redundancy and diversity. The validity of the proposed ECU design approach is verified by using the EMB Hardware-In-the-Loop (HILS) system, which consists of the EMB assembly, actuator ECU, a host PC, and a few debugging devices. Furthermore, it is shown that the existing sensor fault tolerant control system can be used more effectively for mitigating the effects of hardware and software faults by applying the proposed ECU design method.

Keywords: BBW (Brake-By-wire), EMB (Electro-Mechanical Brake), Functional Safety, ISO26262.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 6928
316 Minimum Energy of a Prismatic Joint with out: Actuator: Application on RRP Robot

Authors: Tawiwat V., Tosapolporn P., Kedit J.

Abstract:

This research proposes the state of art on how to control or find the trajectory paths of the RRP robot when the prismatic joint is malfunction. According to this situation, the minimum energy of the dynamic optimization is applied. The RRP robot or similar systems have been used in many areas such as fire fighter truck, laboratory equipment and military truck for example a rocket launcher. In order to keep on task that assigned, the trajectory paths must be computed. Here, the open loop control is applied and the result of an example show the reasonable solution which can be applied to the controllable system.

Keywords: RRP robot, Optimal Control, Minimum Energy and Under Actuator.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1249
315 Improving the Shunt Active Power Filter Performance Using Synchronous Reference Frame PI Based Controller with Anti-Windup Scheme

Authors: Consalva J. Msigwa, Beda J. Kundy, Bakari M. M. Mwinyiwiwa

Abstract:

In this paper the reference current for Voltage Source Converter (VSC) of the Shunt Active Power Filter (SAPF) is generated using Synchronous Reference Frame method, incorporating the PI controller with anti-windup scheme. The proposed method improves the harmonic filtering by compensating the winding up phenomenon caused by the integral term of the PI controller. Using Reference Frame Transformation, the current is transformed from om a - b - c stationery frame to rotating 0 - d - q frame. Using the PI controller, the current in the 0 - d - q frame is controlled to get the desired reference signal. A controller with integral action combined with an actuator that becomes saturated can give some undesirable effects. If the control error is so large that the integrator saturates the actuator, the feedback path becomes ineffective because the actuator will remain saturated even if the process output changes. The integrator being an unstable system may then integrate to a very large value, the phenomenon known as integrator windup. Implementing the integrator anti-windup circuit turns off the integrator action when the actuator saturates, hence improving the performance of the SAPF and dynamically compensating harmonics in the power network. In this paper the system performance is examined with Shunt Active Power Filter simulation model.

Keywords: Phase Locked Loop (PLL), Voltage SourceConverter (VSC), Shunt Active Power Filter (SAPF), PI, Pulse WidthModulation (PWM).

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1519
314 Ride Control of Passenger Cars with Semi-active Suspension System Using a Linear Quadratic Regulator and Hybrid Optimization Algorithm

Authors: Ali Fellah Jahromi, Wen Fang Xie, Rama B. Bhat

Abstract:

A semi-active control strategy for suspension systems of passenger cars is presented employing Magnetorheological (MR) dampers. The vehicle is modeled with seven DOFs including the, roll pitch and bounce of car body, and the vertical motion of the four tires. In order to design an optimal controller based on the actuator constraints, a Linear-Quadratic Regulator (LQR) is designed. The design procedure of the LQR consists of selecting two weighting matrices to minimize the energy of the control system. This paper presents a hybrid optimization procedure which is a combination of gradient-based and evolutionary algorithms to choose the weighting matrices with regards to the actuator constraint. The optimization algorithm is defined based on maximum comfort and actuator constraints. It is noted that utilizing the present control algorithm may significantly reduce the vibration response of the passenger car, thus, providing a comfortable ride.

Keywords: Full car model, Linear Quadratic Regulator, Sequential Quadratic Programming, Genetic Algorithm

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2896
313 Experimental Analysis and Optimization of Process Parameters in Plasma Arc Cutting Machine of EN-45A Material Using Taguchi and ANOVA Method

Authors: Sahil Sharma, Mukesh Gupta, Raj Kumar, N. S Bindra

Abstract:

This paper presents an experimental investigation on the optimization and the effect of the cutting parameters on Material Removal Rate (MRR) in Plasma Arc Cutting (PAC) of EN-45A Material using Taguchi L 16 orthogonal array method. Four process variables viz. cutting speed, current, stand-off-distance and plasma gas pressure have been considered for this experimental work. Analysis of variance (ANOVA) has been performed to get the percentage contribution of each process parameter for the response variable i.e. MRR. Based on ANOVA, it has been observed that the cutting speed, current and the plasma gas pressure are the major influencing factors that affect the response variable. Confirmation test based on optimal setting shows the better agreement with the predicted values.

Keywords: Analysis of variance, Material removal rate, plasma arc cutting, Taguchi method.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1172