Effect of Pre-Plasma Potential on Laser Ion Acceleration
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 32804
Effect of Pre-Plasma Potential on Laser Ion Acceleration

Authors: Djemai Bara, Mohamed Faouzi Mahboub, Djamila Bennaceur-Doumaz

Abstract:

In this work, the role of the preformed plasma created on the front face of a target, irradiated by a high intensity short pulse laser, in the framework of ion acceleration process, modeled by Target Normal Sheath Acceleration (TNSA) mechanism, is studied. This plasma is composed of cold ions governed by fluid equations and non-thermal & trapped with densities represented by a "Cairns-Gurevich" equation. The self-similar solution of the equations shows that electronic trapping and the presence of non-thermal electrons in the pre-plasma are both responsible in ion acceleration as long as the proportion of energetic electrons is not too high. In the case where the majority of electrons are energetic, the electrons are accelerated directly by the ponderomotive force of the laser without the intermediate of an accelerating plasma wave.

Keywords: Cairns-Gurevich Equation, ion acceleration, plasma expansion, pre-plasma.

Digital Object Identifier (DOI): doi.org/10.5281/zenodo.3299499

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 654

References:


[1] D. Strickland and G. Mourou, Opt. Commun, vol 56, pp.219, 1985.
[2] A. Dalilottojari, B. Delalat, F. J. Harding, M. P. Cockshell, C. S. Bonder, N. H. Voelcker, World Academy of Science, Engineering and Technology, International Journal of Biotechnology and Bioengineering Vol:11, No:1, 2017.
[3] M. Borghesi, D. Campbell, A. Schiavi, and O. Willi, Laser Part. Beams, vol 20, pp. 269,2002.
[4] E. L. Clark, K. Krushelnick, J. R. Davies, and M. Zepf, Phys. Rev. Lett. vol 84, pp. 670, 2000.
[5] A. Maksimchuk, S. Gu, K. Flippo, and D. Umstadter, Phys. Rev. Lett. vol 84, pp. 4108, (2000).
[6] R. A. Snavely, M. H. Key, S. P. Hatchett, and T. E. Cowan, Phys. Rev. Lett. vol 85, pp.2945, 2000.
[7] S. C. Wilks, A. B. Langdon, T. E. Cowan, and M. Roth, Phys. Plasmas, vol 8, pp.542, 2001.
[8] E. L. Clark, K. Krushelnick, M. Zepf, and F. N. Beg, Phys. Rev. Lett. vol 85, pp.1654, 2000.
[9] S. P. Hatchett, C. G. Brown, T. E. Cowan, and E. A. Henry, Phys. Plasmas, vol 7, pp.2076, 2000.
[10] M. F. Mahboub, and M. Djebli, World Academy of Science, Engineering and Technology, International Journal of Physical and Mathematical Sciences Vol:6, No:11, 2012.
[11] J. Denavit, Phys. Fluids, vol 22, pp.1384, 1979.
[12] P. R. Bolton, M. Borghesi, C. Brenner, D. C. Carroll, C. De Martinis, F. Fiorini, A. Flacco, V. Floquet, J. Fuchs, P. Gallegos, D. Giove, J.S. Green, S. Green, B. Jones, D. Kirby, P. McKenna, D. Neely, F. Nuesslin, R. Prasad, S. Reinhardt, M. Roth, U. Schramm, G.G. Scott, S. Ter-Avetisyan, M. Tolley, G. Turchetti, and J. J. Wilkens, Physica Medica, vol 30, pp.255, 2014.
[13] F. Q. Shao, W. Q. Wang, Y. Yin, T. P. Yu, D. B. Zou, J. M. Ouyang, World Academy of Science, Engineering and Technology, International Journal of Physical and Mathematical Sciences Vol:10, No:4, 2016.
[14] J. Peebles, M. S. Wei, A. V. Arefiev, C. McGuffey, R. B. Stephens, W. Theobald, D. Haberberger, L. C. Jarrott, A. Link, H. Chen, H. S. McLean, A. Sorokovikova, S. I. Krasheninnikov and F. N. Beg, New J. Phys. vol 19, pp.023008, 2017.
[15] D. Bennaceur-Doumaz, D. Bara, E. Benkhelifa, and M. Djebli, J. Appl. Phys. vol 117, pp.043303, 2015.
[16] D. Bennaceur-Doumaz, D. Bara, and M. Djebli, Laser Part. Beams, vol 33, pp.723, 2015.
[17] D. Bara, D. Bennaceur-Doumaz, andM. Djebli, Laser Part. Beams, vol 32, pp.391, 2014.
[18] K. Annou, D. Bara, and D. Bennaceur-Doumaz, J. Plasma Physics, vol 81, pp.905810318, 2015.
[19] A. V. Gurevich, L. V. Pariiskaya, and L. P. Pitaevskii, Sov. Phys. JETP, vol 22, pp.449, 1966.
[20] Prabal Singh Verma, World Academy of Science, Engineering and Technology, International Journal of Physical and Mathematical Sciences Vol:11, No:11, 2017.
[21] Yun-Ju Chiu, Feng-Yi Chen, World Academy of Science, Engineering and Technology, International Journal of Educational and Pedagogical Sciences Vol:12, No:3, 2018.
[22] Hamdy M. Youssef, Eman A. Al-Lehaibi, World Academy of Science, Engineering and Technology, International Journal of Mathematical and Computational Sciences Vol:12, No:12, 2018.
[23] M. Passoni, V. T. Tikhonchuk, M. Lontano, and V. Y. Bychenkov, Phys. Rev. E, vol 69, pp.026411, 2004.
[24] B. S. Paradkar, M. S. Wei, T. Yabuuchi, R. B. Stephens, M. G. Haines, S. I. Krasheninnikov, and F. N. Beg, Phys. Rev. E, vol 83, pp.046401, 2011.
[25] T. Zh. Esirkepov, J. K. Koga, A. Sunahara, T. Morita, M. Nishikino, K. Kageyama, H. Nagatomo, K. Nishihara, A. Sagisaka, H. Kotaki, T. Nakamura, Y. Fukuda, H. Okada, A. S. Pirozhkov, A. Yogo, M. Nishiuchi, H. Kiriyama, K. Kondo, M. Kando and S. V. Bulanov, Nucl. Instr. Meth. Phys. Res. A, vol 745, pp.150, 2014.
[26] A. B. Malekynia, World Academy of Science, Engineering and Technology, International Journal of Physical and Mathematical Sciences Vol:5, No:2, 2011.
[27] Zhao Wang, Hong Yan, World Academy of Science, Engineering and Technology, International Journal of Mechanical and Mechatronics Engineering Vol:12, No:9, 2018.
[28] C. Sack and H. Schamel, Phys. Reports, vol 156, pp.311, 1987.
[29] Ya. B. Zel’dovich and Yu. P. Raizer, Physics of Shock Waves and High-Temperature Phenomena. Academic Press, New York, 1966.
[30] D. Bennaceur-Doumaz and M. Djebli, Phys. Plasmas, vol 17, pp.074501, 2010.
[31] D. Bennaceur-Doumaz, D. Bara, and M. Djebli, Adv. Mat. Res. vol 227, pp.53, 2011.
[32] F. Verheest and S. R. Pillay, Phys. Plasmas, vol 15, pp.013703, 2008.
[33] F. Verheest and M. A. Hellberg, Phys. Plasmas, vol 24, pp.022306, 2017.
[34] S. Yu. Kalmykova, L. M. Gorbunov, P. Mora and G. Shvets, Phys. Plasmas, vol 13, pp.113102, 2006.
[35] J. Faure, C. Rechatin, A. Norlin, A. Lifschitz, Y. Glinec, and V. Malka, Nature, vol 444, pp.737, 2006.
[36] B. S. Paradkar, S. I. Krasheninnikov, and F. N. Beg, Phys. Plasmas, vol 19, 060703, 2012.