Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 33093
Plasma Density Distribution in Asymmetric Geometry Capacitive Coupled Plasma Discharge System
Authors: Yinchang Du, Yangfang Li
Abstract:
In this work, we used the single Langmuir probe to measure the plasma density distribution in an geometrically asymmetric capacitive coupled plasma discharge system. Because of the frame structure of powered electrode, the plasma density was not homogeneous in the discharge volume. It was higher under the frame, but lower in the centre. Finite element simulation results showed a good agreement with the experiment results. To increase the electron density in the central volume and improve the homogeneity of the plasma, we added an auxiliary electrode, powered by DC voltage, in the simulation geometry. The simulation results showed that the auxiliary electrode could alter the potential distribution and improve the density homogeneity effectively.Keywords: Capacitive coupled discharge, asymmetric discharge, homogeneous plasma.
Digital Object Identifier (DOI): doi.org/10.5281/zenodo.1061860
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2887References:
[1] M. A. Lieberman and A. J. Lichtenberg, Principles of Plasma Discharges and Materials Processing, (Wiley, New York), 2005, pp.327-328.
[2] T. Makabe and Z. Petrovic, Plasma Electronics: Applications in Microelectronic Device Fabrication, (Taylor & Francis, Boca Raton, FL) 2006, pp.255-272.
[3] E. Kawamura, M. A. Lieberman, and A. J. Lichtenberg, "Capacitive discharges driven by combined dc/rf sources", J. Vac. Sci. Technol. A. vol. 25, 2007, pp.1456-1475.
[4] B. G. Heil, U. Czarnetzki, R. P. Brinkmann and T. Mussenbrock, "On the possibility of making a geometrically symmetric RF-CCP discharge electrically asymmetric", J. Phys. D: Appl. Phys. vol. 41, 2008, pp.165202.
[5] J. W. Coburn and E. Kay, "Positive-ion bombardment of substrates in rf diode glow discharge sputtering", J. Appl. Phys., vol.43, 1972, pp.4965- 4972.
[6] K. K¨ohler, J. W. Coburn, D. E. Horne, E. Kay, and H. Keller, "Plasma potentials of 13.56-MHz rf argon glow discharges in a planar system", J. Appl.Phys., vol.57, 1985, pp.59-67.
[7] M. A. Lieberman and S. E. Savas, "Bias voltage in finite length cylindrical and coaxial radio-frequency discharges", J. Vac. Sci. Technol. A., vol.8, 1990, pp.1632-1642.
[8] K. Radouane, B. Depsax M. Yousfi, J. P. Couderc, E. Klusmann, H. Meyer, R. Schulz, and J.Schulze, "Two-dimensional electrical modeling of asymmetric radio-frequency discharges for geometry effect analysis. Comparison with experiments" J. Appl. Phys., vol.90, 2001, pp.4346- 4354.
[9] M. Mohamed Salem, and J. F. Loiseau, "Experiments to sort out theoretical models concerning the area ratio law for plasma reactors", J. Phys. D: Appl. Phys., vol.29, 1996, pp.1181-1187.
[10] Julian Schulze, Edmund Schngel, Uwe Czarnetzki, Markus Gebhardt, Ralf Peter Brinkmann, and Thomas Mussenbrock, "Making a geometrically asymmetric capacitive rf discharge electrically symmetric", Appl. Phys. Lett., vol.98, 2011, pp.031501.
[11] V. A. Godyak, and R. B. Piejak, "Paradoxical spatial distribution of the electron temperature in a low pressure rf discharge", Appl. Phys. Lett., vol.63, 1993, pp.3137-3139.
[12] Y.F. Li, W.G. Zhang, J.X. Ma, K. Jiang, H.M. Thomas and G.E. Morfill, "Traveling electric field probed by a fine particle above voltagemodulated strips in a striped electrode device", Phys. Plasmas, vol.17, 2010, pp.033705.
[13] F.F. Chen, "Langmuir probes in RF plasma: surprising validity of OML theory", Plasma Sources Sci. Technol., vol.18, 2009, pp.035012.
[14] F.F. Chen, "Time-varying impedance of the sheath on a probe in an RF plasma", Plasma Sources Sci. Technol., vol.15, 2006, pp.773-782.
[15] J. M. Kriesela, and C. F. Driscoll, "Electron plasma profiles from a cathode with an r 2 potential variation", Phys. Plasmas, vol.5, 1998, pp.1265-1272.