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Abstract—The problem of finding control laws for underactuated
systems has attracted growing attention since these systems are
characterized by the fact that they have fewer actuators than the
degrees of freedom to be controlled. The acrobot, which is a planar
two-link robotic arm in the vertical plane with an actuator at the elbow
but no actuator at the shoulder, is a representative in underactuated
systems. In this paper, the dynamic model of the acrobot is
implemented using Mathworks’ Simscape. And the sliding mode
control is constructed using MATLAB and Simulink.
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1. INTRODUCTION

NDERACTUATED mechanical systems have fewer

control inputs than degrees of freedom (D.O.F) and arise
in applications, such as space and undersea robots, mobile
robots, walking, brachiating, and gymnastic robots. Since there
are tight couplings between actuated and unactuated D.O.Fs in
such systems, the control input cannot accelerate the state of the
system in arbitrary directions. Consequently, underactuated
mechanical systems cannot be commanded to follow arbitrary
trajectories [1]. A mechanical system may be underactuated in
several ways. The most obvious way is from intentional design
as in the brachiation robot of Fukuda, the passive walker of
McGeer, the acrobot, or the Pendubot [2]. The control of
underactuated systems is an open and interesting problem in
controls. Recently many control researchers have concerned
such control problems for underactuated mechanical systems
and several methods have been developed [3]-[5].

The acrobot, which is a representative in underactuated
systems, is a planar two-link robotic arm in the vertical plane
with an actuator at the elbow, but no actuator at the shoulder. In
contrast, the pendubot has an actuator at the shoulder but not at
the elbow [1], [2].

In this paper, the dynamic model of the acrobot is
implemented using Mathworks’ Simscape™. And the sliding
mode control is constructed using MATLAB and Simulink.

II. DYNAMIC MODEL AND CONTROL

Consider the Lagrangian dynamics of an n™ mechanical
system.

This work was supported by the GRRC program of Gyeonggi province.
(GRRC HANKYONG 2013-B02).

Dong Sang Yoo is with Department of Electrical, Electronic and Control
Engineering, Hankyong National University, Anseong-si, Gyeonggi-do,
456-749 Korea (phone: +82-31-670-5322; fax: +82-31-670-5329; e-mail:
dsyoo@hknu.ac kr).

International Scholarly and Scientific Research & Innovation 9(6) 2015

M(q)g+C(q,9)q +g(q)=B(q)r (1

where g € R" is the vector of generalized coordinates, 7 € R"™

is the input generalized force (m<n), and B(q) € R™" has full
rank for all g.

q,

Fig. 1 Two-link robot

Now consider a two-link robot shown in Fig. 1. g, is the
shoulder joint angle and ¢, is the elbow joint angle. The
dynamic equation of the two link robot is as:

(L +1,+ mzllz +2myl 1 ,¢))g, + (L, + myl il ,¢))g,
—myl,l,5,4,9, — mzlllczs2c}22 +mgl,s,

2

+myg(lis) +1.,8,,) =1
(I, +myl 1 ,¢,)g, + 1,4, + mzlllczsz‘ﬁ

+mygl,s,,, =1,

where m; and m, are masses of link 1 and link 2, respectively.
And ¢ =cosf, , s ,=sinf , and s =sin(d +6). If

7, =0 this system represents the acrobot, while if 7, =0 the

system represents the pendubot [2].

In this paper, we used Mathworks’ Simscape™™ to model the
acrobot dynamics described in (2). Simscape is a tool for
modeling and simulating multidomain physical systems, such
as those with mechanical, hydraulic, pneumatic, electrical, and
electromagnetic components. Unlike other Simulink blocks,
which represent mathematical operations or operate on signals,
Simscape blocks represent physical components or
relationships directly [6].

Conventional Simulink model and Simscape model of the
acrobot are shown in Figs. 2 and 3, respectively. And the
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TABLE I
ACROBOT MODEL PARAMETERS

acrobot parameters that we have chosen are summarized in

Table I.
Symbol Description Value
. m mass of link 1 1.0 kg
dag1 .
= dda1 m; mass of link 2 1.0 kg
4’. 4 A length of link 1 1.0m
Aa Divide Integratort Integrator __@ lz ]ength Of lll’lk b 1.0m
D, 1 B sda2 — — duz L1 center of mass of link 1 0.5m
tauz wlic . » > .
—_:: L 1] 1] ? la center of mass of link 2 0.5m
Addt ez earsters rersers I moment of inertia of link 1 0.083 kg-m’
M11(x) 2
T L moment of inertia of link 2 0.083 kg'm”
MA12(x)*dd2 )
w Dynamic Model of a Pendubot
| |
M21(x)*ddq1 FO Env
flu)
| |
C11(x,dx)'dg 1 Ground
e I‘h ' Locstion = [0 0 0] €
C12(x, dxy*dg2 g1 Init. Pos.
flu) | tau1
C21(x,dx)*dq1 ‘ -
tu)
G1(x)
[ ™
I qi
G2(x) - |
i Link 1 Sensor
Mass: 1 kg R a dg1
Fig. 2 Acrobot model using Simulink ot 08 o iean %
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v
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) = Sensor Fig. 4 Pendubot model using Simscape™
Link 1 = dag1
Mass 1 kg a
Inertia: 0.083 kg.m?2 We chose an integral sliding function as:
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CS1: [0 .5 0] (CG) 2.(0 (0 e (0
Co2 105 01 00) »(0) ,(0) ,(0)

Fig. 3 Acrobot model using Simscape™

Similarly, we could easily build a pendubot model with
parameters in Table I using Simscape as shown in Fig. 4.
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where e, =g, —g,, for i=1, 2 and g,, is the desired angular

position for link i. I' and A are positive definite diagonal
matrices. Simulink model for the integral sliding function is
shown in Fig. 5.
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Fig. 5 Simulink model for a sliding function i
Constant

Based on well-known parametric characteristics of the
acrobot, we designed a sliding mode control as:

Fig. 7 Simulink detail model for p,

e
7, = Kys, —u, (6) L
. R
& ™ "
Uy =2 p, 2 (p |s +Ks2|) (7) = P r’gﬂ—|_.
2 = 2 2 171 171
Is,|+ & sy +& €5 =
where K| and K, are positive constant gains and ¢ is a small x
Fen
constant. p,and p,are the boundary values for nonlinearities/
» |ul 2 | K1 +
uncertainties of link 1 and link 2, respectively. Figs. 6 & 7 show I%I ?_'
Simulink model for boundary of nonlinearities/uncertainties for Functen e

the acrobot. Simulink model for the sliding mode control is

shown in Fig. 8.

o
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i > dat Fig. 8 Simulink model for sliding mode control
([&D; @ L — »dert
s1 r
v w ddert . . . . .
@ Ao Ly mg| i . ™D Simulink model for the whole system is shown in Fig. 9.
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Fig. 9 Simulink model for the whole system

II1.

For computer simulations, the acrobot parameters that we

SIMULATION
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have chosen are summarized in Table I. The illustrative
example of the balancing task for the acrobot is as follows. The
initial position is chosen as (q,, ¢,) =(7/4,7/4) and the

initial velocity and desired position of the robot are chosen as

91(0):‘}2(0):0 (8)
4,4(0)=0, ¢,,(0)=0

The simulation result is presented in Fig. 9.

IV. CONCLUSION

In this paper, to model and control for the acrobot which is

one of underactuated mechanical systems, we used Mathworks’
Simulink/Simscape. And the controller using the sliding mode
was constructed using Simulink.
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Fig. 9 Illustrative Example
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