Search results for: Copper-manganese-chromium oxide catalysts
344 The Impact of Surface Roughness and PTFE/TiF3/FeF3 Additives in Plain ZDDP Oil on the Friction and Wear Behavior Using Thermal and Tribological Analysis under Extreme Pressure Condition
Authors: Gabi N. Nehme, Saeed Ghalambor
Abstract:
The use of titanium fluoride and iron fluoride (TiF3/FeF3) catalysts in combination with polutetrafluoroethylene (PTFE) in plain zinc- dialkyldithiophosphate (ZDDP) oil is important for the study of engine tribocomponents and is increasingly a strategy to improve the formation of tribofilm and provide low friction and excellent wear protection in reduced phosphorus plain ZDDP oil. The influence of surface roughness and the concentration of TiF3/FeF3/PTFE were investigated using bearing steel samples dipped in lubricant solution at 100°C for two different heating time durations. This paper addresses the effects of water drop contact angle using different surface; finishes after treating them with different lubricant combination. The calculated water drop contact angles were analyzed using Design of Experiment software (DOE) and it was determined that a 0.05 μm Ra surface roughness would provide an excellent TiF3/FeF3/PTFE coating for antiwear resistance as reflected in the Scanning electron microscopy (SEM) images and the tribological testing under extreme pressure conditions. Both friction and wear performance depend greatly on the PTFE/and catalysts in plain ZDDP oil with 0.05 % phosphorous and on the surface finish of bearing steel. The friction and wear reducing effects, which was observed in the tribological tests, indicated a better micro lubrication effect of the 0.05 μm Ra surface roughness treated at 100°C for 24 hours when compared to the 0.1 μm Ra surface roughness with the same treatment.
Keywords: Scanning Electron Microscopy (SEM), ZDDP, catalysts, PTFE, friction, wear.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1628343 Influence of UV Treatment on the Electrooptical Properties of Indium Tin Oxide Films Used in Flexible Displays
Authors: Mariya P. Aleksandrova, Ivelina N. Cholakova, Georgy K. Bodurov, Georgy D. Kolev, Georgy H. Dobrikov
Abstract:
Indium-tin oxide films are deposited by low plasma temperature RF sputtering on highly flexible modification of glycol polyethyleneterephtalate substrates. The produced layers are characterized with transparency over 82 % and sheet resistance of 86.9 Ω/square. The film’s conductivity was further improved by additional UV illumination from light source (365 nm), having power of 250 W. The influence of the UV exposure dose on the structural and electro-optical properties of ITO was investigated. It was established that the optimum time of illumination is 10 minutes and further UV treatment leads to polymer substrates degradation. Structural and bonds type analysis show that at longer treatment carbon atoms release and diffuse into ITO films, which worsen their electrical behavior. For the optimum UV dose the minimum sheet resistance was measured to be 19.2 Ω/square, and the maximum transparency remained almost unchanged – above 82 %.Keywords: Flexible displays, indium tin oxide, RF sputtering, UV treatment
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2270342 The Concentration Effects for the Adsorption Behavior of Heptyl Viologen Cation Radicals on Indium-Tin-Oxide Electrode Surfaces
Authors: Yusuke Ayato, Takashi Itahashi, Akiko Takatsu, Kenji Kato, Naoki Matsuda
Abstract:
In situ observation of absorption spectral change of heptil viologen cation radical (HV+.) was performed by slab optical waveguide (SOWG) spectroscopy utilizing indium-tin-oxide (ITO) electrodes. Synchronizing with electrochemical techniques, we observed the adsorption process of HV+.on the ITO electrode. In this study, we carried out the ITO-SOWG observations using KBr aqueous solution containing different concentration of HV to investigate the concentration dependent spectral change. A few specific absorption bands, which indicated HV+.existed as both monomer and dimer on ITO electrode surface with a monolayer or a few layers deposition, were observed in UV-visible region. The change in the peak position of the absorption spectra from adsorption species of HV+. were correlated with the concentration of HV as well as the electrode potential.Keywords: absorption phenomena, heptil viologen, indium-tin-oxide (ITO) electrode, in situ, slab optical waveguide(SOWG) spectroscopy,
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1541341 The Effect of Discontinued Water Spray Cooling on the Heat Transfer Coefficient
Authors: J. Hrabovský, M. Chabičovský, J. Horský
Abstract:
Water spray cooling is a technique typically used in heat treatment and other metallurgical processes where controlled temperature regimes are required. Water spray cooling is used in static (without movement) or dynamic (with movement of the steel plate) regimes. The static regime is notable for the fixed position of the hot steel plate and fixed spray nozzle. This regime is typical for quenching systems focused on heat treatment of the steel plate. The second application of spray cooling is the dynamic regime. The dynamic regime is notable for its static section cooling system and moving steel plate. This regime is used in rolling and finishing mills. The fixed position of cooling sections with nozzles and the movement of the steel plate produce nonhomogeneous water distribution on the steel plate. The length of cooling sections and placement of water nozzles in combination with the nonhomogeneity of water distribution lead to discontinued or interrupted cooling conditions. The impact of static and dynamic regimes on cooling intensity and the heat transfer coefficient during the cooling process of steel plates is an important issue. Heat treatment of steel is accompanied by oxide scale growth. The oxide scale layers can significantly modify the cooling properties and intensity during the cooling. The combination of static and dynamic (section) regimes with the variable thickness of the oxide scale layer on the steel surface impact the final cooling intensity. The study of the influence of the oxide scale layers with different cooling regimes was carried out using experimental measurements and numerical analysis. The experimental measurements compared both types of cooling regimes and the cooling of scale-free surfaces and oxidized surfaces. A numerical analysis was prepared to simulate the cooling process with different conditions of the section and samples with different oxide scale layers.
Keywords: Heat transfer coefficient, numerical analysis, oxide layer, spray cooling.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2978340 Structural and Optical Properties of Silver Sulfide-Reduced Graphene Oxide Nanocomposite
Authors: Oyugi Ngure Robert, Tabitha A. Amollo, Kallen Mulilo Nalyanya
Abstract:
Nanomaterials have attracted significant attention in research because of their exemplary properties, making them suitable for diverse applications. This paper reports the successful synthesis as well as the structural and optical properties of silver sulfide-reduced graphene oxide (Ag2S-rGO) nanocomposite. The nanocomposite was synthesized by the chemical reduction method. Scanning electron microscopy (SEM) showed that the reduced graphene oxide (rGO) sheets were intercalated within the Ag2S nanoparticles during the chemical reduction process. The SEM images also showed that Ag2S had the shape of nanowires. Further, SEM energy dispersive X-ray (SEM EDX) showed that Ag2S-rGO is mainly composed of C, Ag, O, and S. X-ray diffraction analysis manifested a high crystallinity for the nanowire-shaped Ag2S nanoparticles with a d-spacing ranging between 1.0 Å and 5.2 Å. Thermal gravimetric analysis (TGA) showed that rGO enhances the thermal stability of the nanocomposite. Ag2S-rGO nanocomposite exhibited strong optical absorption in the UV region. The formed nanocomposite is dispersible in polar and non-polar solvents, qualifying it for solution-based device processing. Thus, the surface plasmon resonance effect associated with metallic nanoparticles, strong optical absorption, thermal stability crystallinity and hydrophilicity of the nanocomposite suits it for solar energy conversion applications.
Keywords: Silver sulfide, reduced graphene oxide, nanocomposite, structural properties, optical properties.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 29339 Vitamin C Status and Nitric Oxide in Buffalo Ovarian Follicular Fluid in Relation to Seasonal Heat Stress and Phase of Estrous Cycle
Authors: H. F. Hozyen, A. M. Abo-El Maaty
Abstract:
Heat stress is a recognized problem causing huge economic losses to the buffalo breeders as well as dairy industry. The aim of the present work was to study the pattern of vitamin C and nitric oxide in follicular fluid of buffalo during different seasons of the year considering phase of estrous cycle. This study was conducted on 208 cyclic buffaloes slaughtered at Al-Qaliobia governorate, Egypt, over one year. The obtained results revealed that vitamin C in follicular fluid was significantly lower in summer than winter and spring. On the other hand, nitric oxide (NO) was significantly higher in summer and autumn than winter and spring. Both vitamin C and NO did not differ significantly between follicular and luteal phases. In conclusion, the present study revealed that alterations in concentrations of follicular fluid vitamin C and NO that occur in summer could be related to low summer fertility in buffalo.
Keywords: Buffalo, follicular fluid, vitamin C, NO and heat stress.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1214338 An Evaluation of the Oxide Layers in Machining Swarfs to Improve Recycling
Authors: J. Uka, B. McKay, T. Minton, O. Adole, R. Lewis, S. J. Glanvill, L. Anguilano
Abstract:
Effective heat treatment conditions to obtain maximum aluminium swarf recycling are investigated in this work. Aluminium swarf briquettes underwent treatments at different temperatures and cooling times to investigate the improvements obtained in the recovery of aluminium metal. The main issue for the recovery of the metal from swarfs is to overcome the constraints due to the oxide layers present in high concentration in the swarfs since they have a high surface area. Briquettes supplied by Renishaw were heat treated at 650, 700, 750, 800 and 850 ℃ for 1-hour and then cooled at 2.3, 3.5 and 5 ℃/min. The resulting material was analysed using SEM EDX to observe the oxygen diffusion and aluminium coalescence at the boundary between adjacent swarfs. Preliminary results show that, swarf needs to be heat treated at a temperature of 850 ℃ and cooled down slowly at 2.3 ℃/min to have thin and discontinuous alumina layers between the adjacent swarf and consequently allowing aluminium coalescence. This has the potential to save energy and provide maximum financial profit in preparation of swarf briquettes for recycling.
Keywords: Aluminium, swarf, oxide layers, recycle, reuse.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 573337 Electrical Performance of a Solid Oxide Fuel Cell Unit with Non-Uniform Inlet Flow and High Fuel Utilization
Authors: Ping Yuan, Mu-Sheng Chiang, Syu-Fang Liu, Shih-Bin Wang, Ming-Jun Kuo
Abstract:
This study investigates the electrical performance of a planar solid oxide fuel cell unit with cross-flow configuration when the fuel utilization gets higher and the fuel inlet flow are non-uniform. A software package in this study solves two-dimensional, simultaneous, partial differential equations of mass, energy, and electro-chemistry, without considering stack direction variation. The results show that the fuel utilization increases with a decrease in the molar flow rate, and the average current density decreases when the molar flow rate drops. In addition, non-uniform Pattern A will induce more severe happening of non-reaction area in the corner of the fuel exit and the air inlet. This non-reaction area deteriorates the average current density and then deteriorates the electrical performance to –7%.Keywords: Performance, Solid oxide fuel cell, non-uniform, fuelutilization
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1306336 Optical Reflectance of Pure and Doped Tin Oxide: From Thin Films to Poly-Crystalline Silicon/Thin Film Device
Authors: Smaali Assia, Outemzabet Ratiba, Media El Mahdi, Kadi Mohamed
Abstract:
Films of pure tin oxide SnO2 and in presence of antimony atoms (SnO2-Sb) deposited onto glass substrates have shown a sufficiently high energy gap to be transparent in the visible region, a high electrical mobility and a carrier concentration which displays a good electrical conductivity [1]. In this work, the effects of polycrystalline silicon substrate on the optical properties of pure and Sb doped tin oxide is investigated. We used the APCVD (atmospheric pressure chemical vapour deposition) technique, which is a low-cost and simple technique, under nitrogen ambient, for growing this material. A series of SnO2 and SnO2-Sb have been deposited onto polycrystalline silicon substrates with different contents of antimony atoms at the same conditions of deposition (substrate temperature, flow oxygen, duration and nitrogen atmosphere of the reactor). The effect of the substrate in terms of morphology and nonlinear optical properties, mainly the reflectance, was studied. The reflectance intensity of the device, compared to the reflectance of tin oxide films deposited directly on glass substrate, is clearly reduced on the overall wavelength range. It is obvious that the roughness of the poly-c silicon plays an important role by improving the reflectance and hence the optical parameters. A clear shift in the minimum of the reflectance upon doping level is observed. This minimum corresponds to strong free carrier absorption, resulting in different plasma frequency. This effect is followed by an increase in the reflectance depending of the antimony doping. Applying the extended Drude theory to the combining optical and electrical obtained results these effects are discussed.Keywords: Doping, oxide, reflectance.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2913335 Fabrication of Poly(Ethylene Oxide)/Chitosan/Indocyanine Green Nanoprobe by Co-Axial Electrospinning Method for Early Detection
Authors: Zeynep R. Ege, Aydin Akan, Faik N. Oktar, Betul Karademir, Oguzhan Gunduz
Abstract:
Early detection of cancer could save human life and quality in insidious cases by advanced biomedical imaging techniques. Designing targeted detection system is necessary in order to protect of healthy cells. Electrospun nanofibers are efficient and targetable nanocarriers which have important properties such as nanometric diameter, mechanical properties, elasticity, porosity and surface area to volume ratio. In the present study, indocyanine green (ICG) organic dye was stabilized and encapsulated in polymer matrix which polyethylene oxide (PEO) and chitosan (CHI) multilayer nanofibers via co-axial electrospinning method at one step. The co-axial electrospun nanofibers were characterized as morphological (SEM), molecular (FT-IR), and entrapment efficiency of Indocyanine Green (ICG) (confocal imaging). Controlled release profile of PEO/CHI/ICG nanofiber was also evaluated up to 40 hours.
Keywords: Chitosan, coaxial electrospinning, controlled releasing, indocyanine green, nanoprobe, polyethylene oxide.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 764334 Synthesis, Characterization and Physico–Chemical Properties of Nano Zinc Oxide and PVA Composites
Authors: Rashmi S. H., G. M. Madhu, A. A. Kittur, R. Suresh
Abstract:
Polymer nanocomposites represent a new class of materials in which nanomaterials act as the reinforcing material in composites, wherein small additions of nanomaterials lead to large enhancements in thermal, optical and mechanical properties. A boost in these properties is due to the large interfacial area per unit volume or weight of the nanoparticles and the interactions between the particle and the polymer. Micro sized particles used as reinforcing agents scatter light, thus reducing light transmittance and optical clarity. Efficient nanoparticle dispersion combined with good polymer–particle interfacial adhesion eliminates scattering and allows the exciting possibility of developing strong yet transparent films, coatings and membranes. This paper aims at synthesising zinc oxide nanoparticles which are reinforced in poly vinyl alcohol (PVA) polymer. The mechanical properties showed that the tensile strength of the PVA nanocomposites increases with the increase in the amount of nanoparticles.
Keywords: Glutaraldehyde, polymer nanocomposites, poly vinyl alcohol, zinc oxide.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3035333 Synthesis, Characterization and Coating of the Zinc Oxide Nanoparticles on Cotton Fabric by Mechanical Thermo-Fixation Techniques to Impart Antimicrobial Activity
Authors: Imana Shahrin Tania, Mohammad Ali
Abstract:
The present study reports the synthesis, characterization and application of nano-sized zinc-oxide (ZnO) particles on a cotton fabric surface. The aim of the investigations is to impart the antimicrobial activity on textile cloth. Nanoparticle is synthesized by wet chemical method from zinc sulphate and sodium hydroxide. SEM (scanning electron micrograph) images are taken to demonstrate the surface morphology of nanoparticles. XRD analysis is done to determine the crystal size of the nanoparticle. With the conformation of nanoformation, the cotton woven fabric is treated with ZnO nanoparticle by mechanical thermo-fixation (pad-dry-cure) technique. To increase the wash durability of nano treated fabric, an acrylic binder is used as a fixing agent. The treated fabric shows up to 90% bacterial reduction for S. aureus (Staphylococcus aureus) and 87% for E. coli (Escherichia coli) which is appreciable for bacteria protective clothing.Keywords: Nanoparticle, zinc oxide, cotton fabric, antibacterial activity, binder.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 585332 0.13-µm Complementary Metal-Oxide Semiconductor Vector Modulator for Beamforming System
Authors: J. S. Kim
Abstract:
This paper presents a 0.13-µm Complementary Metal-Oxide Semiconductor (CMOS) vector modulator for beamforming system. The vector modulator features a 360° phase and gain range of -10 dB to 10 dB with a root mean square phase and amplitude error of only 2.2° and 0.45 dB, respectively. These features make it a suitable for wireless backhaul system in the 5 GHz industrial, scientific, and medical (ISM) bands. It draws a current of 20.4 mA from a 1.2 V supply. The total chip size is 1.87x1.34 mm².
Keywords: CMOS, vector modulator, beamforming, wireless backhaul, ISM.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1056331 Characterization of Fish Bone Catalyst for Biodiesel Production
Authors: Sarina Sulaiman, N. Khairudin, P. Jamal, M. Z. Alam, Zaki Zainudin, S. Azmi
Abstract:
In this study, fish bone waste was used as a new catalyst for biodiesel production. Instead of discarding the fish bone waste, it will be utilized as a source for catalyst that can provide significant benefit to the environment. Also, it can be substitute as a calcium oxide source instead of using eggshell, crab shell and snail shell. The XRD and SEM analysis proved that calcined fish bone contains calcium oxide, calcium phosphate and hydroxyapatite. The catalyst was characterized using Scanning Electron Microscope (SEM) and X-ray Diffraction (XRD).
Keywords: Calcinations, fish bone, transesterification, waste catalyst.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4047330 Impact of Zn/Cr Ratio on ZnCrOx-SAPO-34 Bifunctional Catalyst for Direct Conversion of Syngas to Light Olefins
Authors: Yuxuan Huang, Weixin Qian, Hongfang Ma, Haitao Zhang, Weiyong Ying
Abstract:
Light olefins are important building blocks for chemical industry. Direct conversion of syngas to light olefins has been investigated for decades. Meanwhile, the limit for light olefins selectivity described by Anderson-Schulz-Flory (ASF) distribution model is still a great challenge to conventional Fischer-Tropsch synthesis. The emerging strategy called oxide-zeolite concept (OX-ZEO) is a promising way to get rid of this limit. ZnCrOx was prepared by co-precipitation method and (NH4)2CO3 was used as precipitant. SAPO-34 was prepared by hydrothermal synthesis, and Tetraethylammonium hydroxide (TEAOH) was used as template, while silica sol, pseudo-boehmite, and phosphoric acid were Al, Si and P source, respectively. The bifunctional catalyst was prepared by mechanical mixing of ZnCrOx and SAPO-34. Catalytic reactions were carried out under H2/CO=2, 380 ℃, 1 MPa and 6000 mL·gcat-1·h-1 in a fixed-bed reactor with a quartz lining. Catalysts were characterized by XRD, N2 adsorption-desorption, NH3-TPD, H2-TPR, and CO-TPD. The addition of Al as structure promoter enhances CO conversion and selectivity to light olefins. Zn/Cr ratio, which decides the active component content and chemisorption property of the catalyst, influences CO conversion and selectivity to light olefins at the same time. C2-4= distribution of 86% among hydrocarbons at CO conversion of 14% was reached when Zn/Cr=1.5.
Keywords: Light olefins, OX-ZEO, syngas, ZnCrOx.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1021329 Synthesizing CuFe2O4 Spinel Powders by a Combustion-Like Process for Solid Oxide Fuel Cell Interconnect Coatings
Authors: S. N. Hosseini, M. H. Enayati, F. Karimzadeh, N. M. Sammes
Abstract:
The synthesis of CuFe2O4 spinel powders by an optimized combustion-like process followed by calcination is described herein. The samples were characterized using X-ray diffraction (XRD), differential thermal analysis (TG/DTA), scanning electron microscopy (SEM), dilatometry and 4-probe DC methods. Different glycine to nitrate (G/N) ratios of 1 (fuel-deficient), 1.48 (stoichiometric) and 2 (fuel-rich) were employed. Calcining the asprepared powders at 800 and 1000°C for 5 hours showed that the G/N ratio of 2 results in the formation of the desired copper spinel single phase at both calcination temperatures. For G/N=1, formation of CuFe2O4 takes place in three steps. First, iron and copper nitrates decompose to iron oxide and pure copper. Then, copper transforms to copper oxide and finally, copper and iron oxides react with each other to form a copper ferrite spinel phase. The electrical conductivity and the coefficient of thermal expansion of the sintered pelletized samples were 2 S.cm-1 (800°C) and 11×10-6 °C-1 (25-800°C), respectively.Keywords: SOFC interconnect coatings, Copper ferrite, Spinels, Electrical conductivity, Glycine–nitrate process.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2484328 Inventive Synthesis and Characterization of a Cesium Molybdate Compound: CsBi(MoO4)2
Authors: F. Kurtuluş, G. Çelik Gül
Abstract:
Cesium molybdates with general formula CsMIII(MoO4)2, where MIII = Bi, Dy, Pr, Er, exhibit rich polymorphism, and crystallize in a layered structure. These properties cause intensive studies on cesium molybdates. CsBi(MoO4)2 was synthesized by microwave method by using cerium sulphate, bismuth oxide and molybdenum (VI) oxide in an appropriate molar ratio. Characterizations were done by x-ray diffraction (XRD), fourier transform infrared (FTIR) spectroscopy, scanning electron microscopy/energy dispersive analyze (SEM/EDS), thermo gravimetric/differantial thermal analysis (TG/DTA).Keywords: Cesium bismuth dimolybdate, microwave synthesis, powder x-ray diffraction, rare earth dimolybdates.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2055327 Kinetic Rate Comparison of Methane Catalytic Combustion of Palladium Catalysts Impregnated onto γ-Alumina and Bio-Char
Authors: Noor S. Nasri, Eric C. A. Tatt, Usman D. Hamza, Jibril Mohammed, Husna M. Zain
Abstract:
Catalytic combustion of methane is imperative due to stability of methane at low temperature. Methane (CH4), therefore, remains unconverted in vehicle exhausts thereby causing greenhouse gas GHG emission problem. In this study, heterogeneous catalysts of palladium with bio-char (2 wt% Pd/Bc) and Al2O3 (2wt% Pd/ Al2O3) supports were prepared by incipient wetness impregnation and then subsequently tested for catalytic combustion of CH4. Support-porous heterogeneous catalytic combustion (HCC) material were selected based on factors such as surface area, porosity, thermal stability, thermal conductivity, reactivity with reactants or products, chemical stability, catalytic activity, and catalyst life. Sustainable and renewable support-material of bio-mass char derived from palm shell waste material was compared with those from the conventional support-porous materials. Kinetic rate of reaction was determined for combustion of methane on Palladium (Pd) based catalyst with Al2O3 support and bio-char (Bc). Material characterization was done using TGA, SEM, and BET surface area. The performance test was accomplished using tubular quartz reactor with gas mixture ratio of 3% methane and 97% air. The methane porous-HCC conversion was carried out using online gas analyzer connected to the reactor that performed porous-HCC. BET surface area for prepared 2 wt% Pd/Bc is smaller than prepared 2wt% Pd/ Al2O3 due to its low porosity between particles. The order of catalyst activity based on kinetic rate on reaction of catalysts in low temperature was 2wt% Pd/Bc>calcined 2wt% Pd/ Al2O3> 2wt% Pd/ Al2O3>calcined 2wt% Pd/Bc. Hence agro waste material can successfully be utilized as an inexpensive catalyst support material for enhanced CH4 catalytic combustion.
Keywords: Catalytic-combustion, Environmental, Support-bio-char material, Sustainable, Renewable material.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 6040326 An Infrared Investigation on Surface Species over Iron-Based Catalysts: Implications for Oxygenates Formation
Authors: Wanyu Mao, Hongfang Ma, Haitao Zhang, WeixinQian, Weiyong Ying
Abstract:
The nature of adsorbed species on catalytic surface over an industrial precipitated iron-based high temperature catalyst during FTS was investigated by in-situ DRIFTS and chemical trapping. The formulation of the mechanism of oxygenates formation and key intermediates were also discussed. Numerous oxygenated precursors and crucial intermediates were found by in-situ DRIFTS, such as surface acetate, acetyl and methoxide. The results showed that adsorbed molecules on surface such as methanol or acetaldehyde could react with basic sites such as lattice oxygen or free surface hydroxyls. Adsorbed molecules also had reactivity of oxidizing. Moreover, acetyl as a key intermediate for oxygenates was observed by investigation of CH3OH + CO and CH3I + CO + H2. Based on the nature of surface properties, the mechanism of oxygenates formation on precipitated iron-based high temperature catalyst was discussed.
Keywords: Iron-based catalysts, intermediates, oxygenates, in-situ DRIFTS, chemical trapping.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1561325 Structural and Electrical Characterization of Polypyrrole and Cobalt Aluminum Oxide Nanocomposites
Authors: Sutar Rani Ananda, M. V. Murugendrappa
Abstract:
To investigate electrical properties of conducting polypyrrole (PPy) and cobalt aluminum oxide (CAO) nanocomposites, impedance analyzer in frequency range of 100 Hz to 5 MHz is used. In this work, PPy/CAO nanocomposites were synthesized by chemical oxidation polymerization method in different weight percent of CAO in PPy. The dielectric properties and AC conductivity studies were carried out for different nanocomposites in temperature range of room temperature to 180 °C. With the increase in frequency, the dielectric constant for all the nanocomposites was observed to decrease. AC conductivity of PPy was improved by addition of CAO nanopowder.Keywords: Polypyrrole, dielectric constant, dielectric loss, AC conductivity.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1405324 Decay Heat Contribution Analyses of Curium Isotopes in the Mixed Oxide Nuclear Fuel
Authors: S. S. Nafee, A. K. Al-Ramady, S. A. Shaheen
Abstract:
The mixed oxide nuclear fuel (MOX) of U and Pu contains several percent of fission products and minor actinides, such as neptunium, americium and curium. It is important to determine accurately the decay heat from Curium isotopes as they contribute significantly in the MOX fuel. This heat generation can cause samples to melt very quickly if excessive quantities of curium are present. In the present paper, we introduce a new approach that can predict the decay heat from curium isotopes. This work is a part of the project funded by King Abdulaziz City of Science and Technology (KASCT), Long-Term Comprehensive National Plan for Science, Technology and Innovations, and take place in King Abdulaziz University (KAU), Saudi Arabia. The approach is based on the numerical solution of coupled linear differential equations that describe decays and buildups of many nuclides to calculate the decay heat produced after shutdown. Results show the consistency and reliability of the approach applied.
Keywords: Decay heat, Mixed oxide nuclear fuel, Numerical Solution of Linear Differential Equations, and Curium isotopes
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1889323 Hydrogen Production from Dehydrogenation of Ethanol over Ag-Based Catalysts
Authors: S. Totong, K. Faungnawakij, N. Laosiripojana
Abstract:
The development of alternative energy is interesting in the present especially, hydrogen production because it is an important energy resource in the future. This paper studied the hydrogen production from catalytic dehydrogenation of ethanol through via low temperature (<500°C) reaction. Copper (Cu) and silver (Ag) supported on fumed silica (SiO2) were selected in the present work; in addition, bimetallic material; Ag-Cu supported on SiO2 was also investigated. The catalysts were prepared by the incipient wetness impregnation method and characterized via X-ray diffraction (XRD), temperature-programmed reduction (TPR)and nitrogen adsorption measurements. The catalytic dehydrogenation of ethanol was carried out in a fixed bed continuous flow reactor at atmospheric pressure. The effect of reaction temperature between 300-375°C was studied in order to maximize the hydrogen yield. It was found that Ag-Cu/SiO2 exhibited the highest hydrogen yield compared to Ag/SiO2 and Cu/SiO2 at low reaction temperature (300°C) with full ethanol conversion. The highest hydrogen yield observed was 40% and will be further used as a reactant in fuel cells to generate electricity or feedstock of chemical production.
Keywords: Catalyst, dehydrogenation, ethanol, hydrogen production.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3519322 Optimization of HALO Structure Effects in 45nm p-type MOSFETs Device Using Taguchi Method
Authors: F. Salehuddin, I. Ahmad, F. A. Hamid, A. Zaharim, H. A. Elgomati, B. Y. Majlis, P. R. Apte
Abstract:
In this study, the Taguchi method was used to optimize the effect of HALO structure or halo implant variations on threshold voltage (VTH) and leakage current (ILeak) in 45nm p-type Metal Oxide Semiconductor Field Effect Transistors (MOSFETs) device. Besides halo implant dose, the other process parameters which used were Source/Drain (S/D) implant dose, oxide growth temperature and silicide anneal temperature. This work was done using TCAD simulator, consisting of a process simulator, ATHENA and device simulator, ATLAS. These two simulators were combined with Taguchi method to aid in design and optimize the process parameters. In this research, the most effective process parameters with respect to VTH and ILeak are halo implant dose (40%) and S/D implant dose (52%) respectively. Whereas the second ranking factor affecting VTH and ILeak are oxide growth temperature (32%) and halo implant dose (34%) respectively. The results show that after optimizations approaches is -0.157V at ILeak=0.195mA/μm.
Keywords: Optimization, p-type MOSFETs device, HALO Structure, Taguchi Method.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2039321 Synthesis and Characterization of Nickel and Sulphur Sensitized Zinc Oxide Structures
Authors: Ella C. Linganiso, Bonex W. Mwakikunga, Trilock Singh, Sanjay Mathur, Odireleng M. Ntwaeaborwa
Abstract:
The use of nanostructured semiconducting material to catalyze degradation of environmental pollutants still receives much attention to date. One of the desired characteristics for pollutant degradation under ultra-violet visible light is the materials with extended carrier charge separation that allows for electronic transfer between the catalyst and the pollutants. In this work, zinc oxide n-type semiconductor vertically aligned structures were fabricated on silicon (100) substrates using the chemical bath deposition method. The as-synthesized structures were treated with nickel and sulphur. X-ray diffraction, scanning electron microscopy, energy dispersive X-ray spectroscopy were used to characterize the phase purity, structural dimensions and elemental composition of the obtained structures respectively. Photoluminescence emission measurements showed a decrease in both the near band edge emission as well as the defect band emission upon addition of nickel and sulphur with different concentrations. This was attributed to increased charger-carrier-separation due to the presence of Ni-S material on ZnO surface, which is linked to improved charge transfer during photocatalytic reactions.
Keywords: Carrier-charge-separation, nickel, sulphur, zinc oxide, photoluminescence.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 855320 Gate Tunnel Current Calculation for NMOSFET Based on Deep Sub-Micron Effects
Authors: Ashwani K. Rana, Narottam Chand, Vinod Kapoor
Abstract:
Aggressive scaling of MOS devices requires use of ultra-thin gate oxides to maintain a reasonable short channel effect and to take the advantage of higher density, high speed, lower cost etc. Such thin oxides give rise to high electric fields, resulting in considerable gate tunneling current through gate oxide in nano regime. Consequently, accurate analysis of gate tunneling current is very important especially in context of low power application. In this paper, a simple and efficient analytical model has been developed for channel and source/drain overlap region gate tunneling current through ultra thin gate oxide n-channel MOSFET with inevitable deep submicron effect (DSME).The results obtained have been verified with simulated and reported experimental results for the purpose of validation. It is shown that the calculated tunnel current is well fitted to the measured one over the entire oxide thickness range. The proposed model is suitable enough to be used in circuit simulator due to its simplicity. It is observed that neglecting deep sub-micron effect may lead to large error in the calculated gate tunneling current. It is found that temperature has almost negligible effect on gate tunneling current. It is also reported that gate tunneling current reduces with the increase of gate oxide thickness. The impact of source/drain overlap length is also assessed on gate tunneling current.
Keywords: Gate tunneling current, analytical model, gate dielectrics, non uniform poly gate doping, MOSFET, fringing field effect and image charges.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1733319 Hydrogen Rich Fuel Gas Production from 2- Propanol Using Pt/Al2O3 and Ni/Al2O3 Catalysts in Supercritical Water
Authors: Yağmur Karakuş, Fatih Aynacı, Ekin Kıpçak, Mesut Akgün
Abstract:
Hydrogen is an important chemical in many industries and it is expected to become one of the major fuels for energy generation in the future. Unfortunately, hydrogen does not exist in its elemental form in nature and therefore has to be produced from hydrocarbons, hydrogen-containing compounds or water. Above its critical point (374.8oC and 22.1MPa), water has lower density and viscosity, and a higher heat capacity than those of ambient water. Mass transfer in supercritical water (SCW) is enhanced due to its increased diffusivity and transport ability. The reduced dielectric constant makes supercritical water a better solvent for organic compounds and gases. Hence, due to the aforementioned desirable properties, there is a growing interest toward studies regarding the gasification of organic matter containing biomass or model biomass solutions in supercritical water. In this study, hydrogen and biofuel production by the catalytic gasification of 2-Propanol in supercritical conditions of water was investigated. Pt/Al2O3and Ni/Al2O3were the catalysts used in the gasification reactions. All of the experiments were performed under a constant pressure of 25MPa. The effects of five reaction temperatures (400, 450, 500, 550 and 600°C) and five reaction times (10, 15, 20, 25 and 30 s) on the gasification yield and flammable component content were investigated.Keywords: 2-Propanol, Gasification, Ni/Al2O3, Pt/Al2O3, Supercritical water.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2052318 Titanium Dioxide Modified with Glutathione as Potential Drug Carrier with Reduced Toxic Properties
Authors: Olga Długosz, Jolanta Pulit-Prociak, Marcin Banach
Abstract:
The paper presents a process to obtain glutathione-modified titanium oxide nanoparticles. The processes were carried out in a microwave radiation field. The influence of the molar ratio of glutathione to titanium oxide and the effect of the fold of NaOH vs. stoichiometric amount on the size of the formed TiO2 nanoparticles was determined. The physicochemical properties of the obtained products were evaluated using dynamic light scattering (DLS), transmission electron microscope- energy-dispersive X-ray spectroscopy (TEM-EDS), low-temperature nitrogen adsorption method (BET), X-Ray Diffraction (XRD) and Fourier-transform infrared spectroscopy (FTIR) microscopy methods. The size of TiO2 nanoparticles was characterized from 30 nm to 336 nm. The release of titanium ions from the prepared products was evaluated. These studies were carried out using different media in which the powders were incubated for a specific time. These were: water, SBF and Ringer's solution. The release of titanium ions from modified products is weaker compared to unmodified titanium oxide nanoparticles. The reduced release of titanium ions may allow the use of such modified materials as substances in drug delivery systems.
Keywords: titanium dioxide, nanoparticles, drug carrier, glutathione
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 553317 Effect of Field Dielectric Material on Performance of InGaAs Power LDMOSFET
Authors: Yashvir Singh, Swati Chamoli
Abstract:
In this paper, a power laterally-diffused metal-oxide-semiconductor field-effect transistor (LDMOSFET) on In0.53Ga0.47As is presented. The device utilizes a thicker field-oxide with low dielectric constant under the field-plate in order to achieve possible reduction in device capacitances and reduced-surface-field effect. Using 2D numerical simulations, performance of the proposed device is analyzed and compared with that of the conventional LDMOSFET. The proposed structure provides 50% increase in the breakdown voltage, 21% increase in transit frequency, and 72% improvement in figure-of-merit over the conventional device for same cell pitch.
Keywords: InGaAs, dielectric, lateral, power MOSFET.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1910316 A Multistage Sulphidisation Flotation Procedure for a Low Grade Malachite Copper Ore
Authors: Tebogo P. Phetla, Edison Muzenda
Abstract:
This study was carried out to develop a flotation procedure for an oxide copper ore from a Region in Central Africa for producing an 18% copper concentrate for downstream processing at maximum recovery from a 4% copper feed grade. The copper recoveries achieved from the test work were less than 50% despite changes in reagent conditions (multistage sulphidisation, use of RCA emulsion and mixture, use of AM 2, etc). The poor recoveries were attributed to the mineralogy of the ore from which copper silicates accounted for approximately 70% (mass) of the copper minerals in the ore. These can be complex and difficult to float using conventional flotation methods. Best results were obtained using basic sulphidisation procedures, a high flotation temperature and extended flotation residence time.Keywords: Froth flotation, Sulphidisation, Copper oxide ore, Mineralogy, Recovery
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 5829315 Fe3O4 and Fe3O4@Au Nanoparticles: Synthesis and Functionalisation for Biomolecular Attachment
Authors: Hendriëtte van der Walt, Lesley Chown, Richard Harris, Ndabenhle Sosibo, Robert Tshikhudo
Abstract:
The use of magnetic and magnetic/gold core/shell nanoparticles in biotechnology or medicine has shown good promise due to their hybrid nature which possesses superior magnetic and optical properties. Some of these potential applications include hyperthermia treatment, bio-separations, diagnostics, drug delivery and toxin removal. Synthesis refinement to control geometric and magnetic/optical properties, and finding functional surfactants for biomolecular attachment, are requirements to meet application specifics. Various high-temperature preparative methods were used for the synthesis of iron oxide and gold-coated iron oxide nanoparticles. Different surface functionalities, such as 11-aminoundecanoic and 11-mercaptoundecanoic acid, were introduced on the surface of the particles to facilitate further attachment of biomolecular functionality and drug-like molecules. Nanoparticle thermal stability, composition, state of aggregation, size and morphology were investigated and the results from techniques such as Fourier Transform-Infra Red spectroscopy (FT-IR), Ultraviolet visible spectroscopy (UV-vis), Transmission Electron Microscopy (TEM) and thermal analysis are discussed.Keywords: Core/shell, Iron oxide, Gold coating, Nanoparticles.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2955