@article{(Open Science Index):https://publications.waset.org/pdf/10002165,
	  title     = {The Impact of Surface Roughness and PTFE/TiF3/FeF3 Additives in Plain ZDDP Oil on the Friction and Wear Behavior Using Thermal and Tribological Analysis under Extreme Pressure Condition},
	  author    = {Gabi N. Nehme and  Saeed Ghalambor},
	  country	= {},
	  institution	= {},
	  abstract     = {The use of titanium fluoride and iron fluoride
(TiF3/FeF3) catalysts in combination with polutetrafluoroethylene
(PTFE) in plain zinc- dialkyldithiophosphate (ZDDP) oil is important
for the study of engine tribocomponents and is increasingly a strategy
to improve the formation of tribofilm and provide low friction and
excellent wear protection in reduced phosphorus plain ZDDP oil. The
influence of surface roughness and the concentration of
TiF3/FeF3/PTFE were investigated using bearing steel samples
dipped in lubricant solution at 100°C for two different heating time
durations. This paper addresses the effects of water drop contact
angle using different surface; finishes after treating them with
different lubricant combination. The calculated water drop contact
angles were analyzed using Design of Experiment software (DOE)
and it was determined that a 0.05 μm Ra surface roughness would
provide an excellent TiF3/FeF3/PTFE coating for antiwear resistance
as reflected in the Scanning electron microscopy (SEM) images and
the tribological testing under extreme pressure conditions. Both
friction and wear performance depend greatly on the PTFE/and
catalysts in plain ZDDP oil with 0.05 % phosphorous and on the
surface finish of bearing steel. The friction and wear reducing effects,
which was observed in the tribological tests, indicated a better micro
lubrication effect of the 0.05 μm Ra surface roughness treated at
100°C for 24 hours when compared to the 0.1 μm Ra surface
roughness with the same treatment.
	    journal   = {International Journal of Materials and Metallurgical Engineering},
	  volume    = {8},
	  number    = {7},
	  year      = {2014},
	  pages     = {739 - 746},
	  ee        = {https://publications.waset.org/pdf/10002165},
	  url   	= {https://publications.waset.org/vol/91},
	  bibsource = {https://publications.waset.org/},
	  issn  	= {eISSN: 1307-6892},
	  publisher = {World Academy of Science, Engineering and Technology},
	  index 	= {Open Science Index 91, 2014},