@article{(Open Science Index):https://publications.waset.org/pdf/10001023,
	  title     = {Kinetic Rate Comparison of Methane Catalytic Combustion of Palladium Catalysts Impregnated onto γ-Alumina and Bio-Char},
	  author    = {Noor S. Nasri and  Eric C. A. Tatt and  Usman D. Hamza and  Jibril Mohammed and  Husna M. Zain},
	  country	= {},
	  institution	= {},
	  abstract     = {Catalytic combustion of methane is imperative due to
stability of methane at low temperature. Methane (CH4), therefore,
remains unconverted in vehicle exhausts thereby causing greenhouse
gas GHG emission problem. In this study, heterogeneous catalysts of
palladium with bio-char (2 wt% Pd/Bc) and Al2O3 (2wt% Pd/ Al2O3)
supports were prepared by incipient wetness impregnation and then
subsequently tested for catalytic combustion of CH4. Support-porous
heterogeneous catalytic combustion (HCC) material were selected
based on factors such as surface area, porosity, thermal stability,
thermal conductivity, reactivity with reactants or products, chemical
stability, catalytic activity, and catalyst life. Sustainable and
renewable support-material of bio-mass char derived from palm shell
waste material was compared with those from the conventional
support-porous materials. Kinetic rate of reaction was determined for
combustion of methane on Palladium (Pd) based catalyst with Al2O3
support and bio-char (Bc). Material characterization was done using
TGA, SEM, and BET surface area. The performance test was
accomplished using tubular quartz reactor with gas mixture ratio of
3% methane and 97% air. The methane porous-HCC conversion was
carried out using online gas analyzer connected to the reactor that
performed porous-HCC. BET surface area for prepared 2 wt% Pd/Bc
is smaller than prepared 2wt% Pd/ Al2O3 due to its low porosity
between particles. The order of catalyst activity based on kinetic rate
on reaction of catalysts in low temperature was 2wt%
Pd/Bc>calcined 2wt% Pd/ Al2O3> 2wt% Pd/ Al2O3>calcined 2wt%
Pd/Bc. Hence agro waste material can successfully be utilized as an
inexpensive catalyst support material for enhanced CH4 catalytic
combustion.
},
	    journal   = {International Journal of Energy and Power Engineering},
	  volume    = {9},
	  number    = {4},
	  year      = {2015},
	  pages     = {563 - 569},
	  ee        = {https://publications.waset.org/pdf/10001023},
	  url   	= {https://publications.waset.org/vol/100},
	  bibsource = {https://publications.waset.org/},
	  issn  	= {eISSN: 1307-6892},
	  publisher = {World Academy of Science, Engineering and Technology},
	  index 	= {Open Science Index 100, 2015},
	}