Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 30135
Structural and Electrical Characterization of Polypyrrole and Cobalt Aluminum Oxide Nanocomposites

Authors: Sutar Rani Ananda, M. V. Murugendrappa

Abstract:

To investigate electrical properties of conducting polypyrrole (PPy) and cobalt aluminum oxide (CAO) nanocomposites, impedance analyzer in frequency range of 100 Hz to 5 MHz is used. In this work, PPy/CAO nanocomposites were synthesized by chemical oxidation polymerization method in different weight percent of CAO in PPy. The dielectric properties and AC conductivity studies were carried out for different nanocomposites in temperature range of room temperature to 180 °C. With the increase in frequency, the dielectric constant for all the nanocomposites was observed to decrease. AC conductivity of PPy was improved by addition of CAO nanopowder.

Keywords: Polypyrrole, dielectric constant, dielectric loss, AC conductivity.

Digital Object Identifier (DOI): doi.org/10.5281/zenodo.1127112

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 924

References:


[1] Yang Zhao , Ying Huang, , Qiufen Wang, “Graphene supported poly-pyrrole(PPY)/Li2SnO3 ternary composites as anode materials for lithium ion batteries”, Ceramics Int., Vol 39, Issue 6, 2013, Pages 6861–6866.
[2] Jing Hu, Minchan Li, Fucong Lv, Mingyang Yang, Pengpeng Tao, Yougen Tang, Hongtao Liu, Zhouguang Lu , “Heterogeneous NiCo2O4 @ polypyrrole core/sheath nanowire arrays on Ni foam for high performance super capacitors”, J. Power Sources, Vol 294, 2015, Pages 120–127.
[3] M.V. Murugendrappaa, Ameena Parveenb, M.V.N. Ambika Prasad, “Synthesis, characterization and ac conductivity studies of polypyrrole–vanadium pentaoxide composites”, Mat. Sci. and Engg: A, Vol.1–2, 2007, pages 371–374.
[4] B. D. Cullity, Elements of X-Ray Diffraction, Addison-Wesley Publishing Company, Inc., Reading, Massachusetts, 1956.
[5] Syeda Seema and M. V. N. Ambika Prasad, “Dielectric Spectroscopy of Nanostructured Polypyrrole-NiO Composites”, J. of Polymers, 2014, Article ID 950304, http://dx.doi.org/10.1155/2014/950304.
[6] N. N. Mallikarjuna, S. K. Manohar, P. V. Kulkarni, A. Venkataraman, and T. M. Aminabhavi, “Novel high dielectric constant nanocomposites of polyaniline dispersed with γ-Fe2O3 nanoparticles”, J. Appl. Poly. Sci. Vol. 97, 2005, pages 1868 – 1874
[7] http://www.doitpoms.ac.uk/tlplib/dielectrics/structure.php.
[8] A. Kumar and S. Sarmah, “AC conductivity and dielectric spectroscopic studies of polypyrrole–titanium dioxide hybrid nanocomposites” Phys. Status Solidi A 208, No. 9, 2011, pages 2203–2210.
[9] M. H. Harun, E. Saion, A. Kassim, and M. Y. Hussain, “Temperature Dependence of AC Electrical Conductivity of PVA-PPy-FeCl3 Composite Polymer Films”, Malaysian Poly. J. Vol 3(2), 2008, pages 24 – 31.
[10] Sangappa K Ganiger, Chaluvaraju B V, Murugendrappa M V, “Synthesis, Characterization and A.C. Conductivity Study of Polypyrrole/Strontium Arsenate (Ceramic) Composites” I. J. Inn. Res. Sci. Engg. Tech., Vol. 3, Issue 7, July 2014, pages 14303 – 14313.
[11] T. C. Mo, H. W. Wang, S. Y. Chen, and Y. C. Yeh, “Synthesis and dielectric properties of polyaniline/titanium dioxide nanocomposites”, Ceram. Int. Vol. 34, 2007, pages 1767 – 1771.
[12] C. Bian and G. Xue, “Nanocomposites based on rutile-TiO2 and polyaniline”, Mat. Lett. Vol. 61, 2007, pages 1299 – 1302.
[13] K. R. Anilkumar, A. Parveen, G. R. Badiger, and M. V. N. Ambika Prasad, “Effect of molybdenum trioxide (MoO3) on the electrical conductivity of polyaniline”, Physica B Vol. 404, 2009, pages 1664 – 1667.
[14] P. Thomas, K. Dwarakanath, and K. B. R. Varma, “In situ synthesis and characterization of polyaniline–CaCu3Ti4O12 nanocrystal composites”, Synth. Met. Vol. 159, 2009, pages 2128 – 2134.